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1. Traces on groups

Let G be a group and K a commutative ring. A (K-valued) trace on G is a function
T : G→ K such that for all g, h ∈ G

(1.1) T (gh) = T (hg).

Equivalently, a trace is a function constant on conjugacy classes. A trace extends
to a K-linear map T : KG→ K from the group algebra KG such that (1.1) holds
for any two elements g, h in the group algebra.

Suppose τ : G → G is an automorphism and T a trace. We call T (strongly)
τ -invariant if for all g, h ∈ G the relation

(1.2) T (g · τ(h)) = T (g · h)

holds. If we set g = 1, we have the ordinary τ -invariance T (τ(h)) = T (h). If
T is τ1- and τ2-invariant, then also τ−1

1 - and τ1τ2-invariant. If Γ is a group of
automorphisms of G, then a trace is called Γ-invariant, if T is τ -invariant for
each τ ∈ Γ. It suffices to check Γ-invariance for a generating set of Γ.

Suppose Ti is a trace on Gi (i = 1, 2). Then (g1, g2) 7→ T1(g1)T2(g2) is a trace
on G1 ×G2. We want to generalize this to semi-direct products.

Let α: Γ → AutG be a group of G-automorphisms. The semi-direct product
G×α Γ is a group structure on the set G× Γ defined by

(g, σ)(h, τ) := (g · σ(h), στ).

In this group structure we have

(1.3) (1, σ)(g, 1)(1, σ)−1 = (σ(g), 1).

We will use the following fact several times.

(1.4) Lemma. A pair of group homomorphisms λ: G → H and µ: Γ → H
defines via (g, σ) 7→ λ(g)µ(σ) a homomorphism ϕ: G ×α Γ → H if and only if
for all g ∈ G and σ ∈ Γ the relation λ(σ(g)) = µ(σ)λ(g)µ(σ)−1 holds. Each
homomorphsm ϕ has this form for a unique pair (λ, µ). 2
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Is α: Γ → Aut (G) is an antihomorphism, we define the semi-direct product
Γ α×G with multiplication (σ, g)(τ, h) = (στ, τ(g)h).

The following is immediately verified from the definitions.

(1.5) Proposition. Let S be a Γ-invariant trace on G and U a trace on Γ.
Then

T : G×α Γ → K, (g, σ) 7→ S(g)U(σ)

is a trace on G×α Γ. 2

If ϕ: G → H is a group homomorphism and T a trace on H, then T ◦ ϕ is a
trace on G. Any function T : G→ K on an abelian group G is a trace. Characters
of finite dimensional representations are traces.
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2. Braid groups of type B

The braid group ZBn associated to the Coxeter graph Bn is, by definition, the
group generated by t, g1, . . . , gn−1 with relations

(2.1)

(1) gigjgi = gjgigj, |i− j| = 1
(2) gigj = gjgi, |i− j| ≥ 2
(3) tgi = git, i ≥ 2
(4) tg1tg1 = g1tg1t.

For certain applications we need other presentations of this group.

Let Z ′Bn be the group with generators c, g1, . . . , gn−1 and relations

(2.2)

(1) gigjgi = gjgigj, |i− j| = 1
(2) gigj = gjgi, |i− j| ≥ 2
(3) cgi = gi−1c, i ≥ 2,
(4) c2g1 = gn−1c

2.

We abbreviate g = gn−1gn−2 · · · g1.

(2.3) Proposition. The assignment ϕ(gi) = gi, 1 ≤ j ≤ n−1, and ϕ(t) = g−1c
defines an isomorphism ϕ: ZBn → Z ′Bn.

Proof. The relations (1) and (2) yield in both groups

(2.4) gi−1g = ggi, i > 1.

We define in ZBn (resp. Z ′Bn) an element c (resp. t) by gt = c. From (1), (2)
and (2.4) we see that the relations cgi = gi−1c and git = tgi are equivalent for
i > 1.

We set h = gn−1 · · · g2, k = gn−2 · · · g1 and infer from (2.4)

(2.5) gh = kg.

We use this to show that c2g1 = gn−1c
2 and tg1tg1 = g1tg1t are equivalent,

provided (1), (2), and (3) hold. We compute

g−1
n−1c

2g1 = g−1
n−1gn−1kthg1tg1 = khtg1tg1

c2 = gthg1t = ghtg1t = kgtg1t = khg1tg1t

and see the equivalence. 2

The braid group ZÃn−1 of the Coxeter graph with n vertices Ãn−1 has, by
definition, generators g1, . . . , gn and relations

(2.6)
gigjgi = gjgigj, m(i, j) = 3
gigj = gjgi, m(i, j) = 2.

Indices will be considered modn in this case. We have m(i, j) = 3 if and only if
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i ≡ j ± 1 modn. All this holds for n ≥ 3. For n = 2, the group is the free group
generated by g1 and g2.

The graph Ãn−1 has an automorphism which permutes the vertices cyclically.
We have an induced automorphism s of ZÃn−1 given by

s(gi) = gi−1, imodn.

The n-th power of s is the identity.
We use s to form the semi-direct product

(2.7) ZÃn−1 → Gn → ZZ;

the generator 1 ∈ ZZ acts through s on ZÃn−1. The semi-direct product is the
group structure on the set ZÃn−1×ZZ defined by (x,m)·(y, n) = (x·sm(y),m+n).
The group Gn has the following description by generators and relations. Let G′

n

denote the group with generators s, g1, . . . , gn and relations (2.6) together with

(2.8) sgi = gi−1s, imodn.

(2.9) Proposition. The assignment ψ(gi) = (gi, 0) and ψ(s) = (e, 1) yields an
isomorphism ψ: G′

n → Gn (neutral element e).

Proof. One verifies that ψ is compatible with relations (2.6) and (2.8). This
is obvious for (2.6). The relation (e, 1)(x, 0)(e, 1)−1 = (s(x), 0) is used to show
compatibility with (2.8).

An element x ∈ ZÃn−1 has an image x′ ∈ G′
n, induced by gi 7→ gi. This

assignment has the property (s(x))′ = sx′s−1. We have the HomomorphismGn →
G′

n, (x,m) 7→ x′sm by (1.4). It is inverse to psi. 2

(2.10) Proposition. The assignment α(gi) = gi, 1 ≤ i ≤ n− 1, and α(c) = s
defines an isomorphism α: Z ′Bn → G′

n.

Proof. The assignment is compatible with the relations of Z ′Bn, since

α(c2g1c
−2) = s2g1s

−2 = sgns
−1 = gn−1.

An inverse to α is induced by the assignment β(gi) = gi, β(gn) = cg1g
−1, and

β(s) = c. In order to see that β is well defined, one has to check, in particular,
the relations

gn−1gngn−1 = gngn−1gn, g1gng1 = gng1gn.

In the first case, this amounts to the equalitiy of

gn−1cg1c
−1gn−1 = c2g1c

−1g1cg1c
−2

and
cg1c

−1gn−1cg1c
−1 = cg1cg1c

−1g1c
−1.

We compute

cg1g2g1c
−1 = cg2g1g2c

−1 = cg2c
−1cg1c

−1cg2c
−1 = g1cg1c

−1g1
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and hence
c(g1cg1c

−1g1)c
−1 = c2g1g2g1c

−2.

On the other hand, g1c
−1g1cg1 = g1g2g1. This yields the desired equality.

The second relation above leads to the same situation. 2

If we combine the foregoing, we obtain a semi-direct product

(2.11) ZÃn−1 → ZBn → ZZ.

In terms of the original generators, the inclusion ZÃn−1 ⊂ ZBn is given by

(2.12) gn 7→ gtg1t
−1g−1; gi 7→ gi, 1 ≤ i ≤ n− 1.

The homomorphism ZBn → ZZ in (2.14) is given by gi 7→ 0 and t 7→ 1.
Different types of Weyl groups (= Coxeter groups) are related to these braid

groups. We have the Coxeter groups WÃn−1 and WBn associated to the graphs
Ãn−1 and Bn. In addition, we will also use a group W∞Bn. It is obtained from
ZBn by adding the relations g2

j = 1, but no relation for t. The reason for intro-
ducing this group is a semi-direct product in analogy to (2.14). The arguments
which lead to (2.14) also give a semi-direct product

WÃn−1 → W∞Bn → ZZ.

We give another interpretation and describe these groups as groups of permuta-
tions.

Let tn: ZZ → ZZ, x 7→ x+n be the translation by n. Let Pn denote the group of
tn-equivariant permutations σ: ZZ → ZZ. Equivariance means σ(i+n) = σ(i) +n.
Hence σ induces σ: ZZ/n → ZZ/n, and σ 7→ σ is a homomorphism π: Pn → Sn

onto the symmetric group Sn.

(2.13) Proposition. The kernel of π is isomorphic to ZZn. The group Pn is
isomorphic to the semi-direct product ZZn → P ′

n → Sn in which Sn acts on ZZn by
permutations.

Proof. Let σ1 ∈ Pn. Then there exists a permutation α of {1, . . . , n} and an n-
tuple (k1, . . . , kn) ∈ ZZn such that σ(i+tn) = α(i)+(ki+t)n. We denote this map
by σ1 = σ(α; k1, . . . , kn). Suppose σ2 = σ(β; l1, . . . , ln) is another permutation
written in this form. Then

σ2 ◦ σ1 = σ(βα; lα(1) + k1, . . . , lα(n) + kn).

If we think of P ′
n = Sn × ZZn as sets, then the desired isomorphism is given by

(α; k1, . . . , kn) 7→ σ(α; k1, . . . , kn). 2

The semi-direct product P ′
n has a normal subgroup Q′

n which is given as a
semi-direct product

(2.14) N → Q′
n → Sn
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with N = {(x1, . . . , xn) | ∑
xi = 0} ⊂ ZZn. The homomorphism

ε: P ′
n → ZZ, (α; k1, . . . , kn) 7→

∑
ki

is a surjection with kernel Q′
n. The canonical sequence

(2.15) Q′
n → P ′

n → ZZ

is itself a semi-direct product; the assignment 1 7→ (id; 1, 0, . . . , 0) gives a splitting
of ε. Under the isomorphism (2.13) the subgroup Q′

n corresponds to the subgroup

Qn = {σ ∈ Pn | 1 + 2 + · · ·+ n = σ(1) + · · ·+ σ(n)}.

(2.16) Proposition. The groups W∞Bn and Pn are isomorphic. The groups
WÃn−1 and Qn are isomorphic. The element gi is mapped to the transposition
(i, i + 1), i ∈ nZZ. The element t is mapped to σ(i) = i + n for i ≡ 1 modn and
σ(j)j otherwise.

The proof is given after the proof of (2.21). In the proof of (2.17) we use the
following:

(2.17) Lemma. The elements

t0 = t, t1 = g1tg1, . . . , tn−1 = gn−1 . . . g2g1tg1g2 . . . gn−1

of the braid group ZBn pairwise commute.

Proof. We set
g(i, j) = gigi+1 . . . gj, i ≤ j

g(i, j) = gigi−1 . . . gj, i ≥ j.

The braid relations imply immediately

g(1, j)gj+1g(j, 1) = g(j + 1, 2)g1g(2, j + 1)

and (2.5)
g(2, j + 1)g(1, j + 1) = g(1, j + 1)g(1, j).

By commutativity of gj-elements, it suffices to show titi+1 = ti+1ti. We compute

tjtj+1 = g(j, 1)tg(1, j)gj+1g(j, 1)tg(1, j + 1)

= g(j, 1)tg(j + 1, 2)g1g(2, j + 1)tg(1, j + 1)

= g(j, 1)g(j + 1, 2)tg1tg(2, j + 1)g(1, j + 1)

= g(j, 1)g(j + 1, 2)[tg1tg1]g(2, j + 1)g(1, j).

A similar computation works for tj+1tj. 2

The semi-direct product relation (2.13, (2.17) between W∞Bn and WAn−1

has a counterpart for the braid groups. The homomorphism

λ: Kn → ZAn−1, gj 7→ gj, t 7→ 1
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splits by gj 7→ gj. Therefore we have a semi-direct product

(2.18) ZPn → ZBn → ZAn−1.

The elements

y0 = t, , y1 = g1tg
−1
1 , . . . , yn−1 = gn−1 . . . g1tg

−1
1 . . . g−1

n−1

are contained in the kernel Kn of λ.

(2.19) Lemma. The elements yj have the following conjugation properties with
respect to ZAn−1:

(1) g−1
k yjgk = yj, k > j, k < j − 1

(2) g−1
k ykgk = yk−1,

(3) g−1
k yk−1gk = yk−1yky

−1
k−1.

Proof. (2) follows directly from the definitions.

(1) If k > j, then gk commutes with every generator in the definition of yj. In
the case k < j − 1 one uses the commutation relation between generators and
gk+1gkg

−1
k+1 = g−1

k gk+1gk (and the inverse) to cancel g−1
k and gk.

(3) is proved by induction on k. The verification for k = 0 is easy. We calculate
with (1) and (2)

g−1
k ykyk+1y

−1
k gk = yk−1yk+1y

−1
k−1 = gk+1yk−1yky

−1
k−1g

−1
k+1.

On the other hand, by (1) and (2)

g−1
k+1g

−1
k g−1

k+1ykgk+1gkgk+1 = g−1
k g−1

k+1g
−1
k ykgkgk+1gk

= g−1
k g−1

k+1yk−1gk+1gk

= g−1
k yk−1gk.

This yields the induction step. 2

(2.20) Proposition. The group Kn is the free group generated by y0, . . . , yn−1.

Proof. By the previous Lemma, the group K0
n generated by the y0, . . . , yn−1 is

invariant under conjugation by elements of ZAn−1. Since t ∈ K0
n and t together

with ZAn−1 generates ZBn, we must have equality K0
n = Kn.

Let Fn denote the free group generated by y0, . . . , yn−1. We define homomor-
phisms γ1, . . . , γn−1: Fn → Fn by immitating (2.20):

(1) γk(yj) = yj, k > j, k < j − 1
(2) γk(yk) = yk−1,
(3) γk(yk−1) = yk−1yky

−1
k−1.

We claim:

(2.21) Lemma. The γj are automorphisms and satisfy the braid relations

γiγjγi = γjγiγj, |i− j| = 1, and γiγj = γjγi, |i− j| ≥ 2.

Proof. First we check that the homomorphism δk: Fn → Fn
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(1) δk(yj) = yj, k > j, k < j − 1
(2) δk(yk−1) = yk,
(3) δk(yk) = y−1

k yk−1yk

is inverse to γk. Hence γk is an isomorphism. Since γk fixes yj for j /∈ {k− 1, k},
the second braid relation is obviously satisfied. For the first relation, the reader
may check the following values of γ1γ2γ1 and γ2γ1γ2 on y0, y1, y2:

y0 7→ y0y1y2y
−1
1 y−1

0 , y1 7→ y0y1y
−1
1 , y2 7→ y0.

We use this Lemma to define a semi-direct product

(2.22) Fn → Γn → ZAn−1,

in which gj ∈ ZAn−1 acts on Fn through δj. By (2.19) and K0
n = Kn, we have a

canonical epimorphism µ: Γn → ZBn. We show that µ is an isomorphism. As a
set, Γn = Fn × ZAn−1. An inverse to µ has to send gj 7→ (1, gj) and t 7→ (y0, 1).
We have to check that this assignment is compatible with the relations of ZBn.
This is obvious for the gj. Moreover:

tg1tg1 7→ (y0, 1)(1, g1)(y0, 1)(1, g1)

= (y0, g1)(y0, g1)

= (y0δ1(y0), g
2
1)

= (y0y1, g
2
1)

g1tg1t 7→ (1, g1)(y0, 1)(1, g1)(y0, 1)

= (y1, g1)(y1, g1)

= (y1δ(y1), g
2
1)

= (y0y1, g
2
1).

This finishes the proof of Proposition (2.21). 2

Proof of (2.17). The elements tj of (2.18) and the elements yj coincide in W∞Bn,
since gj = g−1

j in this group. Lemma (2.20) shows that conjugation y 7→ g−1
k ygk

acts on the set (y0, . . . , yn−1) by interchanging yk−1 and yk. The proof of (2.21)
is now easily adapted to show the isomorphism W∞Bn

∼= P ′
n. This isomorphism

restricts to an isomorphism WÃn−1
∼= Q′

n. 2

We now apply the previous results to Hecke algebras. We have the Hecke alge-
bras HAn−1, HÃn−1, and HBn associated to the corresponding Coxeter graphs.
We consider algebras over the ground ring K. The first one is given by genera-
tors g1, . . . , gn−1, the braid relations between them and the quadratic relations
g2

j = (q − 1)gj + q with a parameter q ∈ K. The second one has generators
g1, . . . , gn, the braid relations (2.8) and the same quadratic relations. The alge-
bra HBn has generators t, g1, . . . , gn−1, the braid relations (2.1), the quadratic
relations above for the gj and t2 = (Q− 1)t+Q with another parameter Q ∈ K.
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If we omit the quadratic relation for Q, then we obtain the definition of H∞Bn.
This is not a Hecke algebra in the formal sense, i. e. associated to a Coxeter
graph. It is a deformation of the group algebra of W∞Bn.

We know from Hecke algebra theory that an additive basis of the Hecke algebra
is in bijective correspondence with the elements of the Coxeter group. There is
a similar relation between W∞Bn and H∞Bn. In order to derive it, we relate
HÃn−1 and H∞Bn.

The algebra HÃn−1 has an automorphism τ given by τ(gi) = gi−1 (indices
modn). We define the twisted tensor product over the ground ring K

(2.23) HÃn−1 ⊗ K[τ, τ−1] =: H∞
n

by the multiplication rule (x ⊗ τ k) · (y ⊗ τ l) = (x · τ k(y), τ k+l) for k, l ∈ ZZ and
x, y ∈ HÃn−1.

(2.24) Proposition. The algebra (2.24) is canonically isomorphic to H∞Bn.

Proof. We use the isomorphism (2.3) to redefine the algebra H∞Bn by gener-
ators c, g1, . . . , gn−1 relations (2.2) and the quadratic relations for the gj. The as-
signment gj 7→ gj⊗1, c 7→ 1⊗τ induces a homomorphismH∞Bn → HÃn−1⊗H∞

n .
We have a homomorphism HÃn−1 → H∞Bn, x 7→ x′ induced by gj 7→ gj

with gn = gtg1t
−1g−1 in H∞Bn (see (2.12)). This extends to a homomorphism

H∞
n → H∞Bn by x ⊗ τ k 7→ x′ · ck, since τ(y)′ = cy′c−1. These homomorphisms

are inverse to each other. 2

(2.25) Corollary. Suppose (bj | j ∈ J) is a K-basis of HÃn−1. Then (b′jc
k | j ∈

J, k ∈ ZZ) is a K-basis of H∞Bn. 2
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3. Markov traces on braid groups

We use the semi-direct product (2.19), (2.21)

Fn → ZBn → ZAn−1

in order to construct traces on ZBn by (1.5). This requires a ZAn−1-invariant
trace on Fn.

Let s: ZZ → K be any function with s(0) = 1, called parameter function. We
define a trace Ts: Vn → K on the free abelian multiplicative group Vn with basis
y0, . . . , yn−1 by

(3.1) Ts(y
k(0)
0 · · · yk(n−1)

n−1 ) =
n−1∏
j=0

s(k(j)).

Let Fn → Vn be the abelianization. The trace Ts on Vn lifts to a trace Ts on Fn.

(3.2) Proposition. The trace Ts on Fn is ZAn−1-invariant.

Proof. It suffices to check invariance for the generators gi. This is obvious from
(2.20). 2

If U is any trace on ZAn−1 and Ts the trace (3.2), we call the induced trace
(1.5) on ZBn the s-extension Us of U .

Most important for applications to knot theory are Markov traces on the
groups ZAn. We recall: A sequence U = (Un) of traces Un on ZAn−1 is called a
Markov trace on ZA = (ZAn), provided

(3.3)
Un+1|ZAn−1 = Un

Un+1(xg±1
n ) = α±1β−1Un(x)

for x ∈ ZAn−1 with units α, β ∈ K∗.

Markov traces on ZB = (ZBn) have been constructed by Lambropoulou and
Przytycki [10]. The next Proposition states that the s-extension of a Markov
trace (Un) is a Markov trace in their sense.

(3.4) Proposition. Let (T n) = (Un
s ) denote the family of s-extensions of a

Markov trace (Un) on ZA. Then the following holds:

(1) T n+1|ZBn = T n.

(2) T n+1(xg±1
n ) = z±T

n(x) for x ∈ ZBn, z± = α±1β−1.

(3) T n+1(xyk
n) = s(k)T n(x) for x ∈ ZBn.

Proof. In terms of the semi-direct product ZBn = Fn · ZAn−1, the inclusion
ZBn → ZBn+1 is given by gi 7→ gi and yi 7→ yi for 0 ≤ i ≤ n − 1. The s-traces
Ts on Fn are compatible with Fn → Fn+1, yi 7→ yi. This yields (1).

Suppose x = (h, σ) ∈ Fn · ZAn−1. Then

xyk
n = (h, σ)(yk

n, 1) = (h · σ(yk
n), σ).
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But σ ∈ ZAn−1 acts trivially on yk
n. Therefore

T (h · σ(yk
n)) = T (hyk

n) = T(h)s(k).

This shows (3); and (2) is equally simple. 2

The generalized Hecke algebra H∞Bn is the quotient of the group algebra
KZBn by the ideal generated by the ζi := g2

i − (q − 1)gi − q, provided q ∈ K∗.

(3.5) Proposition. Suppose the trace U : ZAn−1toK factors over the quotient
maps KZAn−1 → HAn−1. Then T = Us: KZBn → K factors over the quotient
map KZBn → H∞Bn.

Proof. We have to show T (xζiy) = T (yxζi) = 0 for all y, x ∈ KZBn. Write
yx = z in the form

∑
j λjujvj with λj ∈ K, uj ∈ Fn, and vj ∈ ZAn−1. Then

T (zζi) =
∑

λjT (ujvjζi) =
∑

λjTs(uj)U(vjζi).

By hypothesis, U(vjζi) = 0. 2

Lambropoulou and Przytycki show that there is a unique trace on the fam-
ily H∞Bn with the properties of the previous Proposition (3.4), normalized by
T (1) = 1. Their proof requires the construction of an inductive basis for the
family H∞Bn. We give a geometric interpretation of their result in section 4.
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4. Braids of type B

We use a theorem of Brieskorn [??] to derive some geometric interpretations of
the braid group ZBn. The starting point is the reflection representation of the
Weyl group WBn. This group is a semi-direct product

(4.1) (ZZ/2)n → WBn → Sn.

It acts on complex n-space Cn as follows:
(1) Sn acts by permuting the coordinates.
(2) (ZZ/2)n act by sign changes (z1, . . . , zn) 7→ (ε1z1, . . . , εnzn), εi ∈ {±1}.

This group contains the reflections in the hyperplanes

zi = ±zj, i 6= j; and zj = 0.

Let X denote the complement of these hyperplanes. From the theory of finite
reflection groups it is known, that W = WBn acts freely on X. Brieskorn [??]
shows:

(4.2) Theorem. The braid group ZBn is isomorphic to the fundamental group
π1(X/W ) of the orbit space X/W . 2

If we think of WBn as the Coxeter group with generators t, g1, . . . , gn−1, then
gj acts as the transposition (j, j + 1) and t as z1 7→ −z1.

We use (5.2) to give several interpretations of ZBn by braids.
We remove the hyperplanes zj = 0 from Cn. It remains the n-fold product

C∗× · · · ×C∗ = C∗n. Removal of the remaining reflection hyperplanes yields the
space X of n-tuples (zj) ∈ C∗n with pairwise different squares z2

j .
The configuration space Cn(C∗) is the space of subsets of C∗ with cardinality

n. As topological space it is defined as Y/Sn where Y ⊂ C∗n is the set of n-tuples
(yj) with pairwise different components.

(4.3) Proposition. X/W is homeomorphic to Cn(C∗).

Proof. We arrive at X/W in two steps: First we form Y ′ = X/(ZZ/2)n and then
we divide out by the Sn-action. The map (zj) 7→ (z2

j ) yields an Sn-equivariant
homeomorphism Y ′ → Y . 2

By (5.2) and (5.3), ZBn
∼= π1(C

n(C∗)). The elements of π1(C
n(C∗)) will be

interpreted as braids in the cylinder (cylindrical braids). We take (1, ω, · · · , ωn−1),
ω = exp(2πi/n), as base point in Cn(C∗). A loop in Cn(C∗) lifts to a path

w: I → Y, t 7→ (w1(t), . . . , wn(t))

with this initial point. Thus we have
(1) w(0) = (1, ω, . . . , ωn−1).
(2) w(1) = (σ(1), . . . , σ(ωn−1)), with a permutation σ of the set ZZ/n =

{1, ω, . . . , ωn−1}.
(3) For j 6= k we have wj(t) 6= wk(t).
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These data yield a braid zw with n strings in C∗× [0, 1] from ZZ/n×0 to ZZ/n×1

zw(t) = {w1(t), . . . , wn(t)} × t.

Homotopy classes of loops correspond to isotopy classes of such braids. Mul-
tiplication of loops corresponds to concatenation of braids, as usual. Thus we
have:

(4.4) Theorem. The braid group ZBn is the group of n-string braids in the
cylinder C∗ × [0, 1]. 2

A second interpretation is by symmetric braids in C× [0, 1]. This was already
used in [3]. We take the base point (1, 2, . . . , n) ∈ X. We lift a loop in X/W to
a path

w: I → X, t 7→ (w1(t), . . . , wn(t)).

Then we have:
(1) w(0) = (1, 2, . . . , n).
(2) w(1) = (±σ(1), . . . ,±σ(n)) with a permutation σ of {1, . . . , n}.
(3) For j 6= k we have wj(t) 6= ±wk(t).
(4) wj(t) 6= 0.

Let [±n] = {−n, . . . ,−1, 1, . . . , n}. The data yield a braid with 2n strings in
C× [0, 1] from [±n]× 0 to [±n]× 1, namely

t 7→ {−wn(t), . . . ,−w1(t), w1(t), . . . , wn(t)} × t.

These braids are ZZ/2-equivariant with respect to (z, t) 7→ (−z, t) and are there-
fore called symmetric. The theorem of Brieskorn thus gives:

(4.5) Theorem. The group ZBn is isomorphic to the group of symmetric braids
with 2n strings. 2

Symmmetric braids are drawn as ordinary braids but with additional symme-
try with respect to the axis 0 × [0, 1]. Here are figures for the generators t and
gj.

??
The symmetry is not the reflection in the axis, but corresponds to a spacial

rotation about this axis. The relation tg1tg1 = g1tg1t appears in this context as
a generalized Reidemeister move.

Braids in the cylinder with n strings can be visualized as ordinary braids with
n + 1 strings — the axis of the cylinder is the additional string. This method
has been used by Lambropoulou [??]. It allows the reduction of Bn-type braids
to ordinary Artin braids, also with respect to proofs. The theorem of Brieskorn
is then not used.

The twofold covering, ramified along the axis, of the cylinder produces a sym-
metric braid from a cylindrical one — and vice versa.

The cylinder C∗× [0, 1] has the universal covering C× [0, 1]. Lifting cylindrical
braids with n strings produces n-periodic infinite braids in C× [0, 1] from ZZ× 0
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to ZZ × 1. They are invariant with respect to the translation (z, t) 7→ (z + n, t).
This gives yet another interpretation of ZBn by n-periodic braid pictures.

The relation between ZBn and ZÃn−1 has the following geometric origin or
counterpart. The map

C∗n → C∗, (z1, . . . , zn) 7→ z1 · . . . · zn

is Sn-equivariant and induces therefore a map from the configuration space

α: Cn(C∗) → C∗.

(4.6) Lemma. The map α is a fibre bundle.

Proof. Let
H = {(z1, . . . , zn) ∈ C∗n |

∏
zj = 1}.

This is an Sn-invariant subset. The map

γ: C∗ ×ZZ/n H → C∗n, (z, z1, . . . , zn) 7→ (zz1, . . . , zzn)

is an Sn-equivariant homeomorphism. Thus γ is the fibre bundle with fibre H
assoziated to the ZZ/n-principal bundle C∗ → C∗, z 7→ zn. In C∗n we have to
remove the subset

C = {(z1, . . . , zn) | there exists i 6= j such that zi = zj}.

Let D = H ∩ C. Then γ induces an Sn-equivariant homeomorphism

γ: C∗ ×ZZ/n (H \D) → C∗n \ S.

This yields the fibre bundle description

C∗ ×ZZ/n (H \ T )/Sn → C∗

for the configuration space. 2

We apply the fundamental group to this fibration and obtain the exact se-
quence

1 → kernelα∗ → ZBn → ZZ → 0.

It can be shown that this is the sequence (2.11), i. e. ZÃn−1 is the fundamental
group of the fibre of α.

Our next aim is to describe an additive basis of the Hecke algebra H∞Bn by
geometric means, i. e. by specifying a certain canonical set of basic braids.

A cylindrical braid with n strings is called descending, if for i < j the i-th
string is always overcrossing the j-th string. The i-th string is the one starting
at ωi, 0 ≤ i ≤ n − 1. Overcrossing means the following: We look radially and
orthogonally from infinity onto the axis. The braid is in general position if we
only see transverse double points. The first string we meet, coming from infinity,
is the overcrossing one.
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(4.7) Theorem. The descending braids form a K-basis of the algebra H∞Bn.
The descending braids with winding number zero form a K-basis of the algebra
HÃn−1.

We use (2.11) to reduce the first statement to the second. For the latter Hecke
algebra we have the canonical basis related to the elements of reduced form in
the Weyl group, and elements of the Weyl group will be shown to correspond
to descending braids. We use the description of the Weyl group elements as n-
periodic permutations of ZZ. We represent such a permutation by n straight lines
c1, . . . , cn in the strip IR × [0, 1] starting at {1, . . . , n} × 0 such that ci and cj
have at most one crossing, and then repeat with period n. By slightly moving the
endpoints of the cj we can assume that the curves are in general position. The
resulting crossings are used to write the permutation as a product of reflections.
This product is reduced in the sense of Coxeter group theory (see (??)). It is
geometrically obvious that the same configuration of crossings can be realized by
a descending braid.

(4.8) Proposition. The set

C = {yk
n−1gn−1gn−2 . . . gj | k ∈ ZZ, 1 ≤ j ≤ n}

is a system of representatives for the left cosets of the inclusion W∞Bn−1 ⊂
W∞Bn.

Proof. This is an immediate consequence of the semi-direct product descrip-
tion. The powers of yn−1 are representatives for cosets of Vn−1 ⊂ Vn, and the
products gn−1 . . . gj are representatives for the cosets of Sn−1 ⊂ Sn. 2

We use this Proposition to derive the following result of Lambropoulou and
Przytycki which was proved by them in a purely algebraic manner. The relation
to standard Hecke algebra bases and the interpretation by descending braids
seems more transparent, though.

(4.9) Theorem. Let B be the canonical basis of H∞Bn−1. Then {bc | b ∈
B, c ∈ C} is a basis of H∞Bn.

Proof. Represent a basis element of H∞Bn by a descending braid. 2

Recall the construction and definition of a Markov trace in section 2. The
last Theorem gives immediately the uniqueness of a Markov trace with given
parameters.

(4.10) Corollary. There exists a unique Markov trace on H∞Bn with given
parameters (s(k) | k ∈ ZZ) and z. 2

From a Markov trace (Un) on ZA one obtains a link invariant. Let x̂ denote
the Alexander closure of the braid x ∈ ZAn−1. Write x as a product of sym-
bols (crossings) g1, g

−1
1 , . . . , gn−1, g

−1
n−1, and let w(x) denote the resulting sum of

exponents (writhe of x). Then a link invariant P is obtained by setting

P (x̂) := α−w(x)βnUn(x)
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for x ∈ ZAn−1. Related are Markov traces Tr = (Trn) on Hecke algebras HA =
(HAn). These are K-linear maps Trn: HAn−1 → K such that

(1) Trn+1|HAn−1 = Trn,
(2) TRn+1(xxn) = zTrn(x), x ∈ HAn−1

with a parameter z ∈ K. Here we use the names x1, . . . , xn−1 for the standard
generators of the Hecke algebra because we want to distinguish them from the
gj. The Hecke algebras are defined with a parameter q ∈ K∗ which enters the
quadratic relation x2

j = (q − 1)xj + q. The relation between the two notions of
Markov traces is the following.

(4.11) Proposition. Let q = p2 and β(p − p−1) = α − α−1 with p2 6= 1. Let
U = (Un) be a Markov trace on ZA with parameters α, β, as defined in section
3. Let ι: ZAn → (HAn)∗ be the homomorphism gj 7→ p−1xj. Then there exists a
unique Markov trace Tr on HA such that Trn ◦ ι = Un. It has parameter z =
p−1αβ−1. The corresponding link invariant satisfies the skein relation αP (L+)−
α−1P (L−) = (p− p−1)P (L0). 2

Lambropoulou [??] has proved a Markov theorem for links of type B (sym-
metric links). The statement is exactly as in the classical case, here called of type
A. A Markov trace (T n: TBn → K) therefore yields an invariant of B-links by
setting

P (x̂) = α−w(x)βnT n(x)

for x ∈ ZBn. Here w(x) still counts the exponent sum in terms of the generators
gj.
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5. Representations of Hecke algebras and R-matrices
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