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We continue our study of knot theory from the point of view of root systems.
The presentation is partly expository, in preparation for later parts of this series.

The first part of this note is concerned with the Coxeter-Dynkin series of type
D. It turns out that some relevant algebra can be reduced to the corresponding
algebra for the series A and B. We demonstrate this for the Temperley-Lieb
algebra TDn and the Kauffman functor for D-tangles.

1. Hecke algebras and Temperley-Lieb algebras

This section collects some general results. Let S be a finite set. A Coxeter matrix
is a symmetric mapping

m: S × S → IN ∪ {∞}

such that m(s, s) = 1 and m(s, t) ≥ 2 for s 6= t. A Coxeter matrix (S,m) is
often specified by its Coxeter graph Γ(S,m). It has S as its set of vertices and an
edge with weight m(s, t) whenever m(s, t) ≥ 3. Usually, he weight m(s, t) = 3 is
omitted in the notation.

The standard Hecke algebra Hq(S,m) associated to a Coxeter matrix (S,m)
is the associative algebra with 1 over the commutative ring K with generators
(xs | s ∈ S) and relations

(1.1)
x2

s = (q − 1)xs + q, q ∈ K∗

xsxtxs . . . = xtxsxt . . . , m(s, t) ≥ 2

(m(s, t) factors on each side, alternating). Here K∗ denotes the unit groups of K.

Suppose m takes values in {1, 2, 3} — the simply laced case. Then the
Temperley-Lieb algebra Td(S,m) is the associative algebra with 1 over K with
generators (es | s ∈ S) and relations

(1.2)
e2s = des d ∈ K∗

eset = etes m(s, t) = 2
esetes = es m(s, t) = 3.

1
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We shall obtain the Temperley-Lieb algebra as a quotient of a Hecke algebra.
For this purpose we assume

(1.3) p ∈ K∗, q = p2, d = p+ p−1.

(1.4) Proposition. Under the hypothesis (1.3) the assignment xs 7→ pes − 1
defines a surjective homomorphism

ϕ: Hq(S,m) → Td(S,m).

The kernel of ϕ is the twosided ideal generated by the elements

x(s, t) = xsxtxs + xsxt + xtxs + xs + xt + 1;

here (s, t) runs over the pairs (s, t) with m(s, t) = 3.

Proof. We verify that ϕ respects the defining relations of the Hecke algebra.
Certainly ϕ(xsxt) = ϕ(xtxs), whenever m(s, t) = 2. Moreover,

(pes − 1)(pes − 1)

= p2e2s − 2pes + 1

= p2(p+ p−1)es − 2pes + 1

= (p2 − 1)(pes − 1) + p2,

hence compatibility with the quadratic relations of the Hecke algebra. Finally,

(pes − 1)(pet − 1)(pes − 1)

= p3esetes − p2(eset + etes + e2s) + p(2es + et)− 1

= −p2(eset + etes) + pes + pet − 1,

if m(s, t) = 3. The result is symmetric in s, t; hence compatibility with the
remaining relations of the Hecke algebra.

Certainly, ϕ is surjective. Let I ⊂ Hq(S,m) denote the ideal generated by the
x(s, t) for (s, t) with m(s, t) = 3. We define a homomorphism

ψ: Td(S,m) → Hq(S,m)/I

by
ψ(es) = p−1(xs + 1).

We have to verify compatibility with (1.2). The first relation follows from the
quadratic relation in the Hecke algebra, the second one is obviously satisfied. For
the third one we compute modulo I

p−1(xs + 1)p−1(xt + 1)p−1(xs + 1)

= p−3(x(s, t) + x2
s + xs)

= p−3((p2 − 1)xs + p2 + xs)

= p−1(xs + 1).
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A similar computation shows that x(s, t) is contained in the kernel of ϕ. Hence ϕ
induces ϕ: Hq/I → Td. By construction, ϕ and ψ are inverse homomorphisms.2

The preceding construction can, in particular, be applied to Coxeter matrices
of ADE-type. The resulting algebras are then finite dimensional. The structure
of TAn−1 associated to the linear graph An−1 with n vertices is well known, see
[??]; this is the classical Temperley-Lieb algebra. In the following sections 2 and
3 we study the algebras related to the graph Dn with n vertices (n ≥ 4). In
section 4 we briefly discuss D-tangles and the associated Kauffman functor.

But first we present one general result: By way of example we show that
Td(S,m) is non-zero. This is done by constructing a standard module which
arises from the reflection representation of the Hecke algebra [??].

We work with a field K. Let V denote the free K-module with basis {vs | s ∈ S}.
We define a symmetric bilinear form B on V by

(1.5)
B(vs, vs) = q + 1
B(vs, vt) = p m(s, t) = 3
B(vs, vt) = 0 m(s, t) = 2.

We define a linear map Xs: V → V by

(1.6) Xs(v) = qvs −B(vs, v)v.

Then Xs(vs) = −vs, and Xs(v) = v for v in the orthogonal complement of vs.
We assume q + 1 ∈ K∗. Then V is the orthogonal direct sum of Kvs and (Kvs)

⊥.
On the latter, Xs acts as multiplication by q. Hence Xs satisfies the quadratic
equation X2

s = (q − 1)Xs + q of the Hecke algebra.
The determinant ds,t of B on the submodule 〈 vs, vt 〉 generated by vs and vt

equals

(1.7) ds,t =

{
(q + 1)2 m(s, t) = 2
q2 + q + 1 m(s, t) = 3.

We therefore also assume q2 +q+1 ∈ K∗. Then V is the orthogonal direct sum of
〈 vs, vt 〉 and 〈 vs, vt 〉⊥. On the latter subspace, Xs and Xt act as multiplication
by q. The action of Xs and Xt on 〈 vs, vt 〉 in the basis vs, vt is given by

(1.8) Xs =

(
−1 p

0 q

)
, Xt =

(
q 0
p −1

)
,

in the case m(s, t) = 3. A simple computation shows

(1.9) XsXtXs = XtXsXt =

(
0 −pq

−pq 0

)
.

Thus we have constructed the reflection representation V of Hq(S,m).
The assignment

(1.10) ω: Hq(S,m) → Hq(S,m), xs 7→ −qx−1
s
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is an involutive automorphism of the Hecke algebra. It transforms V into a new
module W = V ω.

(1.11) Proposition. The module W factors over the homomorphism ϕ of (1.4).

Proof. We set Ys = −qX−1
s . We have to show that the operator

Ys,t = YsYtYs + YsYt + YtYs + Ys + Yt + 1

acts on V as the zero map. With (1.8) we compute that Ys + 1 and Yt + 1 act on
〈 vs, vt 〉 in the basis vs, vt through the matrices

Zs =

(
q + 1 −p

0 0

)
, Zt =

(
0 0

−p q + 1

)
.

This is used to verify on 〈 vs, vt 〉

ZsZtZs = qZs.

A formal calculation, using the quadratic equation for Ys, yields

(Ys + 1)(Yt + 1)(Ys + 1)− q(Ys + 1) = Ys,t.

Therefore Ys,t acts as zero on 〈 vs, vt 〉. SinceXs is multiplication by q on 〈 vs, vt 〉⊥,
we see that −qX−1

s + 1 is the zero map. 2

(1.12) Remark. The determinant of the bilinear form B for the graph Dn in
the basis (vs | s ∈ S) equals (q + 1)(qn−1 + 1). Therefore the form is regular if q
is not a root of unity. ♥

We give a more direct construction of a Td(S,m)-module which does not use
the reflection representation of the Hecke algebra. Let A = (ast) denote a sym-
metric S × S-matrix over K. We consider the associative algebra T (A) over K

with generators (Zs | s ∈ S and relations

(1.13)
Z2

s = assZs

ZsZtZs = astatsZs.

Then a simple verification from the definitions give:

(1.14) Proposition. Let V be the K-module with basis (vs | s ∈ S. The oper-
ators Zs(vt) = astvs make V into a Z(A)-module. (Hence each Zs has rank at
most one on V .) 2

The matrix A = (ast) is called indecomposable, if there is no partition S =
S1
∐
S2 with auv = 0 for u ∈ S1, v ∈ S2.

(1.15) Proposition. Let K be a field. Suppose A is indecomposable and
det(A) 6= 0. The the module V of the previous proposition is a simple T (A)-
module.
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Proof. We have Zs(
∑

j ajvj = (
∑

j ajasj)vs. Suppose v =
∑

j ajvj 6= 0. Since
det(A) 6= 0, not all Zsv are zero. If 0 6= M ⊂ V is a T (A)-submodule, then
there exists s ∈ S with vs ∈ M . Suppose vt /∈ M . Since Ztvs = atsvt ∈ M , we
must have ats = 0. This contradicts the indecomposability of A. Hence all vt are
containes in M . 2

In the case of a Coxeter graph, we set ass = d, ast = 1 for m(s, t) = 3, and
ast = 0 for m(s, t) = 2. Then V becomes a module over Td(S,m). Also, det(A)
is a non-trivial monic polynomial in d, hence in general not zero.
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2. The structure of TDn

The algebra TDn with parameter d ∈ K is associated to the graph Dn. In the
following figure we have specified the names of the generators.
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The algebra TDn will be decomposed into an algebra which belongs to the linear
graph An−1 and another algebra which is related to the graph Bn. Here An−1 is
the linear Coxeter graph with n−1 vertices e1, . . . , en−1 and m(ej, ej+1) = 3. We
use the same notation for the generators of TDn and TAn−1. The following is
easily verified.

(2.1) Proposition. The assignment e0 7→ e1 and ej 7→ ej (j ≥ 1) defines a
surjective homomorphism α: TDn → TAn−1. 2

We remark that the automorphism of the graph Dn which interchanges e0 and
e1 and fixes ej for j ≥ 2 induces an involution τ : TDn → TDn. We have ατ = α.

(2.2) Proposition. The kernel of α is the twosided ideal I generated by the
difference e0 − e1. The homomorphism α1: TAn−1 → TDn, e1 7→ ej is right
inverse to α. We therefore have a splitting of modules

TDn = I ⊕ TAn−1.

Proof. The inclusion I ⊂ kernelα follows from the definitions. The relation
αα1 = id is obvious. The composition

TDn/I -α
TAn−1

-α1 TDn/I

is easily seen to be be the identity on generators. Hence I = kernelα. 2

We now use the following algebra T ′Dn of Temperley-Lieb type: It has gener-
ators ε0, . . . , εn−1 and relations

(2.3)

ε2
j = dεj j ≥ 1
ε2
0 = 2ε0

εiεj = εjεi |i− j| ≥ 2
ε1ε0ε1 = dε1

εiεjεi = εi |i− j| = 1; i, j ≥ 1.

This is a variant of the algebra of Bn type which has been studied in [??],[??].

(2.4) Proposition. The assignment β(e0) = (ε0 − 1)ε1(ε0 − 1) and β(ej) = εj

for j ≥ 1 defines a homomorphism

β: TDn → T ′Dn.
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Proof. For j ≥ 1, the ej and εj satisfy the same relations; we consider the
remaining ones. We use

(ε0 − 1)2 = 1, ε1(ε0 − 1)ε1 = 0

and verify easily β(e20) = dβ(e0) and β(e0e2e0) = β(e2e0e2). Moreover β(e0e1) =
0 = β(e1e0). 2

The proof of the previous proposition shows that the twosided ideal J gener-
ated by e0e1 is contained in the kernel of β. The image of β will turn out to be
half of T ′Dn, and J is equal to the kernel of β. In order to prove these statements
we introduce the crossed product of TDn/J =: A with the algebra K[τ ]/(τ 2 − 1)
where τ acts via the previously defined involution τ on A. Formally, this crossed
product B is defined as the free A-module with basis 1, τ and multiplication

(a+ bτ) · (c+ dτ) := (ac+ bdτ ) + (bcτ + ad)τ,

where xτ denotes the action of τ on x. Note that the ideal J is τ -stable.

(2.5) Proposition. The assignment εj 7→ εj (j ≥ 1) and ε0 7→ 1 + τ defines
an isomorphism β1: T

′Dn → B. The image of β corresponds to the subalgebra
A. The kernel of β is equal to J .

Proof. The relation ε2
0 = 2ε0 corresponds to (1 + τ)2 = 1 + 2τ + 1 = 2(1 + τ).

The element ε1ε0ε1 is mapped to e1 · (1 + τ) · e1 = (e1 + e1τ) · e1 = e21 + e1e0τ
and this equals de1 modulo J . We see that β1 is well-defined and surjective. The
inverse homomorphism is given by β and τ 7→ ε0 − 1. 2

The algebras T ′Dn and TAn−1 have augmentation homomorphisms to K which
map the generators εj and ej to zero. Let T ′′Dn denote the image of β. We have
a sequence

(2.6) 0 → TDn
-(α1, β)
TAn−1 ⊕ T ′′Dn → K → 0;

the map to K is the difference of the augmentations. The structure of TDn will
be obtained from the next result.

(2.7) Theorem. The sequence (2.6) is exact.

Proof. We show that α maps the kernel J of β isomorphically onto the kernel
of the augmentation. For this purpose we recall a basis of TAn−1, see [??]. We
set

e(i, j) = eiei−1 . . . ej, i ≥ j.

Then a basis of TAn−1 is given by the products

e(i1, j1) · . . . · e(ip, jp)

(2.8)
1 ≤ i1 < . . . < ip ≤ n− 1, 1 ≤ j1 < . . . < jp ≤ n− 1

js ≤ is, 0 ≤ p ≤ n− 1.
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We exhibit a basis of J which is mapped onto this basis. We use the notation

ē(i, j) = eiei−1 . . . e1e0e2 . . . ej, j ≥ 2.

This element is mapped under α to de(i, j). Recall that d ∈ K∗ is a unit.
We show that J is spanned by the elements of the form (2.8) where e(i1, j1)

is replaced by ē(i1, j1); this finishes the proof of (2.7).
We consider words in the symbols e0, . . . , en−1. An elementary reduction of a

word is one of the following replacements: ejej by dej, eiejei by ei, eiej by ejei.
Note that the length of the word is not increased. A coefficient of the form dr may
appear. A word is in reduced form, if it cannot be shortened by an elementary
reduction. The words (2.8) are reduced. Certainly, J is generated by reduced
words.

We claim that J is generated by reduced words of the form ae0e1b in which a
and b do not involve e0 and e1.

We know already that J is the ideal generated by words ce0e1d. If d contains
e1, say, then the word contains a string of the form e1xe1 in which x involves
only ej, j ≥ 2. A word of this type is never reduced; this follows easily by using
(2.8) for x. This shows the claim.

We next consider normal forms of reduced words in J by induction on n.
Suppose a reduced word contains two factors en−1, say a string en−1yen−1 with
y not involving en−1 and of shortest length. Then, by induction, this string must
equal ē(n−1, n−1). If a word contains z = ē(n−1, n−1), it is not reduced, unless
it is equal to z. Therefore z is the only reduced word in J with two appearances
of en−1. Next, consider reduced words which have the form w = xen−1y. By
interchanging elements, if necessary, we assume that y has minimal length. Then
y necessarily has the form e(n − 2, j) or ē(n − 2, j). Since x does not contain
en−1, we can apply the induction hypothesis to x. Since w is reduced, it is easily
seen that w has the form (2.8) with e(i1, j1) replaced by ē(i1, j1). 2

We assume known the structure of TAn−1 in the generic case (q not a root
of unity) [??]. It remains to study the algebra T ′′Dn. This is the subject of the
next section.

We conclude this section with some remarks concerning the algebra of the
graph Dn: braid groups and Hecke algebras.

Each Coxeter matrix (S,m) has associated to it a braid group Z(S,m) with
generators (xs | s ∈ S) and relations xsxtxs . . . = xtxsxt . . . with m(s, t) fac-
tors on each side. For the graph Dn we define another braid group Z ′Dn with
generators κ0, . . . , κn−1 and relations

(2.9)

κiκjκi = κjκiκj |i− j| = 1; i, j ≥ 1
κ0κ1κ0κ1 = κ1κ0κ1κ0

κiκj = κjκi |i− j| ≥ 2
κ2

0 = 1.

This is a quotient of the group ZBn for which the last relation is not present.
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(2.10) Proposition. The group Z ′Dn is the semidirect product of ZDn with
ZZ/2. The generator τ of ZZ/2 acts on ZDn by the automorphism induced by the
graph automorphism.

Proof. Let G denote the semi-direct product. We define inverse homomor-
phisms f : G→ Z ′Dn and g: Z ′Dn → G by

f : τ, x0, x1, . . . , xn−1 7→ κ0, κ1κ0κ1, κ1, . . . , κn−1

g: κ0, κ1, . . . , κn−1 7→ τ, x1, . . . , xn−1.

2

We remark that conjugation by κ0 corresponds to τ .
We define the Hecke algebra H ′Dn as the associative algebra with 1 generated

by κ0, . . . , κn−1 with braid relations as above and quadratic relations κ2
0 = 1 and

κ2
j = (q − 1)κj + q for j ≥ 1. This is a Hecke algebra of Bn-type where the

parameter Q belonging to κ0 has been specialized to 1. We have an embedding
α̃: HDn → H ′Dn, x0 7→ κ0κ1κ0, xj 7→ κj for j ≥ 1. As in the case of the
Temperley-Lieb algebras we see:

(2.11) Proposition. The algebra H ′Dn is the crossed product of HDn with
K[τ ]/(τ 2 − 1). 2

There is a connecting between Hecke algebras and Temperley-Lieb algebras
as follows.

(2.12) Proposition. The algebra T ′Dn is a quotient of H ′Dn under the homo-
morphism ϕ′: κ0 7→ ε0 − 1, κj 7→ pεj − 1 (j ≥ 1). The diagram

HDn
-α̃

H ′Dn

?

ϕ

?

ϕ′

TDn
-α

T ′Dn

is commutative. 2

For use in other situations we formalize the preceding discussion. Suppose we
have two Coxeter graphs which differ in a similar way as Bn and Dn do. The
following figure illustrates this situation:

r r r r rrXXX
���

XXX
���

���
XXXκ2 κ1 κ0

4
x2 x1

x0

S T

The box stands for the same subgraph in both cases and is connected to x2

(resp. κ2) by the same weighted edges. The graph T carries the involution τ
which interchanges κ0 and κ1. Therefore we can form the semi-direct product of
the braid group
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(2.13) ZT ×τ ZZ/2.

We also have the quotient

(2.14) Z ′T = ZS/(κ2
0 = 1).

The same proof as for (.??) shows:

(2.15) Proposition. The groups ZT ×τ ZZ/2 and Z ′T are isomorphic. 2

Also (??) has its analogue in this case.
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3. The reduced Temperley-Lieb algebra

This section presents the structure of T ′Dn and T ′′Dn for generic parameters (p
not a root of unity). The algebra T ′Dn is of the type Bn but not exactly the same.
Therefore we have to extend some of results in [??] to the present situation.

There exists idempotent elements fk and gk in T ′Dn with the following prop-
erties:

(1) 1− 1
2
ε0

(2) fk = fk−1 + pk−1+p−k+1

pk+p−k fk−1vekfk−1, 1 ≤ k ≤ n− 1

(3) εjfk = fkεj = 0, 0 ≤ k ≤ k

(4) g0 =
1

2
ε0

(5) gk = gk−1 + pk−1+p−k+1

pk+p−k gk−1εkgk−1, 1 ≤ k ≤ n− 1

(6) εjgk = gkεj = 0, 1 ≤ j ≤ k
(7) ε0gk = gkε0, 0 ≤ k ≤ n− 1
(8) gkfk = fkgk = 0, 0 ≤ k ≤ n− 1
(9) η(fk) = 1− 1

2
ε0

(10) η(gk) = 1
2
ε0

The map η is the augmentation which sends ej, j ≥ 1, to zero.
The proof for these assertions is as for [??], Satz 5.2, by induction on k. With

the help of the central orthogonal idempotents fn−1 and gn−1 it is shown as in
[??], Satz (7.1), that the Bratteli diagram of the inclusion T ′Dn−1 ⊂ T ′Dn is the
same as for the inclusion TBn−1 ⊂ TBn. In particular, T ′Dn has n + 1 simple

modules M0(n),M1(n), . . . ,Mn(n) with Mj(n) = Nj of dimension
(

n
j

)
.

The simple modules of T ′′Dn are determined via restriction from T ′Dn.

(3.1) Theorem. The algebra T ′′Dn has the following irreducible modules:

(1) Suppose n = 2k+1. The restrictions resMj for j ≤ k. Moreover resMj
∼=

resMn−j.
(2) Suppose n = 2k. The restrictions resMj, j < k. In this case resMj

∼=
resMn−j. The module resMk is the direct sum of two simple T ′′Dn-module
of the same dimension.

The proof of (3.1) is by induction on n. One uses the structure of the Bratteli-
diagram for T ′Dn−1 ⊂ T ′Dn and the following general fact about the crossed
product construction of T ′Dn from T ′′Dn.

Let A be a semi-simple algebra with an involutive automorphism τ over the
field K of characteristic zero and let B denote the crossed product algebra as
described in section 2. If U is an A-module, let U τ denote the same vector space
with the A-action twisted by τ . The map a + bτ 7→ a − bτ is an automorphism
of B. If V is a B-module, then V̄ is obtained from V by twisting with this
automorphism (conjugate module). A simple A-module U is called of type I
(resp. type II) if U ∼= U τ (resp. U 6∼= U τ ). A simple B-module V is called of type
I (resp. type II) if V 6∼= V̄ (resp. V ∼= V̄ ). If U is an A-module, we call B ⊗A U
the induced B-module indU . These notations are used in the statement of the
following result.
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(3.2) Proposition.
(1) Suppose V is a simple B-module of type I. Then resV = U is simple of

type I and indU ∼= V ⊕ V̄ .
(2) Suppose V is a simple B-module of type II. Then resV ∼= U ⊕ U τ and

V ∼= indU ∼= indU τ and U,U τ of type two.
(3) Suppose U is a simple A-module of type I. Moreover, resV ∼= resV̄ ∼= U .
(4) Suppose U is a simple A-module of type II. Then indU = V is a simple

B-module of type II and resV ∼= U ⊕ U τ .
Proof. The proof of this proposition is by an adaption of the argument in [??],
Ch. VI for the proof of Theorem (7.3). 2

Proof of (3.1). By (3.2) it suffices to determine the modules M̄j(n). Let resn−1

denote the restriction via T ′Dn−1 ⊂ T ′Dn. From the Bratteli diagram we know

(3.3)
resn−1Mj(n) = Mj−1(n− 1)⊕Mj(n), 1 ≤ j ≤ n− 1
resn−1M0(n) = M0(n− 1), resn−1Mn(n) = Mn−1(n− 1).

The isomorphism type of a simple T ′Dn-module M is therefore determined by
resn−1M . We show by induction on n that M̄j(n) = Mn−j(n). Since restriction is
compatible with conjugation, the induction step follows from (3.3). The induction
starts with the irreducible representations of the group ZZ/2 generated by τ . 2
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4. Braids and tangles of type Dn

The permutations σ of

[±n] = {−n, . . . ,−1, 1, . . . , n}

with the property σ(−i) = −σ(i) form the Weyl group WBn of the root system
Bn. The subgroup of even permutations in WBn is the Weyl group WDn of the
root system Dn. The group WDn has order 2n−1 ·n! and is a semi-direct product

1 → (ZZ/2)n−1 → WDn → Sn → 1

with the symmetric group Sn. The reflection representation of WDn on Cn

is given as follows: The subgroup Sn acts by permutation of coordinates and
(ZZ/2)n−1 by sign changes (zj) 7→ (±zj) with an even number of minus signs.
The reflection hyperplanes are given by zi = zj and zi = −zj for all pairs (i, j)
with i 6= j. Let X be the complement of the reflection hyperplanes and X/W
the orbit space of the free W = WDn action. Brieskorn [??] has shown that the
fundamental group π1(X/W ) is the braid group ZDn.

We translate this result and obtain a description of ZDn by planar braid
pictures.

A loop [w] inX/W with base point (1, . . . , n) can be lifted toX with (1, . . . , n)
as starting point. Let

w: [0, 1] → X, t 7→ (wj(t))

be the resulting path from (1, . . . , n) to (±σ(1), . . . ,±σ(n)). Here σ ∈ Sn, and
the number of minus signs is even. We consider the braid in C × [0, 1] with 2n
strings given by

t 7→ {−wn(t), . . . ,−w1(t), w1(t), . . . , wn(t)} × {t}.

The braid is symmetric with respect to the symmetry C → C, z 7→ −z. the
strings are ζ±j: t 7→ (±wj(t), t). Since w maps into X, the strings have the
following property: The string pairs (ζj, ζ−j) and (ζk, ζ−k) never meet for j 6= k;
an intersection would correspond to a point wj(t) = ±wk(t) on a reflection
hyperplane. A value wj(t) is not excluded, though. In this case, the strings ζj
and ζ−j intersect. Therefore we are not dealing with a braid in the usual sense.
Of course, we can always choose representing paths w such that no intersection
of ζj with ζ−j occurs.

As usual, we consider planar generic projections of braids in the strip IR×[0, 1]
from [±n]× 0 to [±n]× 1 which are symmetric with respect to the axis 0× [0, 1].
The transverse intersection on the axis are ordinary crossings, and the other
crossings are over- and undercrossings which appear in symmetric pairs.

In the geometric picture, the extended braid group Z ′Dn has generators
κ0, . . . , κn−1 with κ0 given by
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and κj (j ≥ 1) given by the symmetrized crossing of the j-th and 1 + j-th string
(see the next figure for κ1). The braid group ZDn has generators xj = κj (j ≥ 1)
and x0 = κ0κ1κ0 represented by
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@
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· · · · · · x0
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The relation κ2
0 = 1 corresponds to a standard Reidemeister move of type II.

It would also be possible to use over- and under-crossing on the axis, but then
allow for an interchange of over-crossing and under-crossing on the axis.

Elements in the subgroup ZDn have in their geometric picture an even number
of crossings on the axis.

The geometric braid groups Z ′Dn and ZDn are included in tangle categories
S ′D and SD. The category S ′D has objects [±n], n ∈ IN0. The morphisms from
[±m] to [±n] are tangle pictures in IR× [0, 1] from [±m]× 0 to [±n]× 1 which
are symmetric with respect to the axis 0 × [0, 1]. The crossings on the axis are
ordinary crossings. Composition is defined by placing one tangle above the other
and shrinking of [0, 2] to [0, 1]. The subcategory SD of S ′D consists of tangles
with an even number of points on the axis. There are similar categories S0D
and S ′0D of oriented tangles. Also, one may consider banded (framed) tangles by
not allowing Reidemeister type I moves. The D-tangle categories are analogous
to the B-tangle categories [??], except for the special treatment of the crossings
on the axis. The categories are tensor module categories over the appropriate
categories of ordinary tangles. Ordinary tangles are included by symmetrizing.

There is a Kauffman functor from S ′D to the category T ′D of bridges. In this
context one chooses a parameter A with p = −A2. The Kauffman functor re-
solves a symmetrized ordinary crossing as usual in the definition of the Kauffman
bracket [??], [??]. A crossing on the axis is treated as in the following figure.

�
�

�

@
@

@ � �
 	
7→ −

There is also a forgetful functor to A-tangles which maps

�
�

�

@
@

@ 7→

and takes the ZZ/2-quotient of the resulting tangle. These two functors correspond
to the splitting of the algebra TDn in section 2.



T. tom Dieck 5. Categories of bridges 15

5. Categories of bridges

This section introduces some general terminology for certain graphical categories.
A free involution σ: P → P of a set P is calles a P -bridge. A free involution

of P is a partition of P into 2-element subsets {i, σ(i)}, called the arcs or strings
of the bridge. A bridge is called oriented if its arcs are ordered sets {a1, a2}.

We study bridges with a geometric terminology. Suppose σ: P → P is a bridge.
The geometric realization |σ| of σ is the one-dimensional simplicial complex with
P as set of 0-simplices and a 1-simplex for each arc {i, σ(i)} with i and σ(i) as
boundary points. We say that the arc connects its boundary points. The arcs are
the components of |σ|.

A (P,Q)-bridge is a bridge on the disjoint union P
∐
Q. An arc of a (P,Q)-

bridge σ is called horizontal if its boundary points are either contained in P or
in Q. The other arcs are called vertical.

We use a graphical notation for (P,Q)-bridges σ. We think of P ⊂ IR × 0,
Q ⊂ IR× 1 and we draw an arc in IR× [0, 1] from i to σ(i). This is illustrated by
the next figure.

??
The crossings of the arcs have no significance right now. The notation hori-

zontal and vertical is evident in this context. The horizontal arcs with endpoints
in P are called the lower part of the bridge, the horizontal arcs with endpoints
in Q the upper part.

(5.1) Remark. Suppose P has 2n elements. The number of P -bridges is

(2n− 1) · (2n− 3) · · · 3 · 1.

Proof. There are 2n − 1 possibilities to connect a fixed element of P . Having
fixed this connection, a set with 2n− 2 elements remains. Now use induction.2

We will use bridges with further properties.
Let G be a group and suppose P and Q are G-sets. A G-equivariant (P,Q)-

bridge is a G-equivariant free involution σ of P
∐
Q. Equivariant means: σ(gi) =

gσ(i) for g ∈ G and i ∈ P ∐Q.
Suppose the bridge σ: P → P is G-eqivariant. We have an induced G-action

on |σ|. The action on the 0-simplices is given. If {i, σ(i)} is a 1-simplex, then, by
equivariance, {gi, gsigma(i)} is a 1-simplex. It can happen that these simplices
coincide. This is the case if g is in the isotropy group Gi of i. If g ∈ G acts
non-trivially on {i, σ(i)}, then

gi = σ(i), gσ(i) = i, g2i = i

and hence g2 ∈ Gi. Geometrically, g acts as reflection in the barycentre of the
1-simplex {i, σ(i)} in this case.

In the sequel we only consider G-sets P with the following additional proper-
ties:
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(1) The isotropy groups are finite.
(2) The orbit set is finite.
(3) G acts effectively on each orbit.

Under these hypotheses we have:

(5.2) Proposition. Let σ be a G-equivariant (P,Q)-bridge. Then the following
holds:

(1) The G-action respects lower, upper and horizontal arcs.
(2) The G-action on |σ| is proper.
(3) The orbit space |σ|/G is a compact one-dimensional CW-complex.

Proof. (1) is clear from the definitions.

(2) The G-action on the barycentric subdivision |σ|′ of |σ| is a cellular action
with finite isotropy groups. Now use [??,I(3.22)].

(3) This follows since G acts cellularly on |σ|′ and the orbit space has a finite
number of cells [??,II(1.15),(1.17)]. 2

Suppose σ is a G-equivariant (P,Q) − bridgeandτ a G-equivariant (Q,R)-
bridge. Consider the G-space |τ | ∪Q |σ|. The components of this space can be if
different type. Consider the G-orbit B = Gx of a component x. Let H denote
the isotropy group of the component x. Then B/G is homeomorphic to x/H.
The orbit space of |τ | ∪ |σ is compact. Hence x/H is compact. We use:

(5.3) Lemma. There is no proper action of a discrete group on [0, 1[ with com-
pact orbit space. 2

This Lemma tells us that the components of |τ | ∪ |σ| are not homeomorphic
to [0, 1[. Since the components are one-dimensional manifolds (with or without
boundary), there are three cases:

(5.4) A componente of |τ | ∪ |σ| is homeomorphic to [0, 1], S1, or ]0, 1[. 2

(5.5) Proposition. The components of |τ | ∪ |σ| which are homeomorphic to
[0, 1] define a G-equivariant (P,R)-bridge.

Proof. If the component is homeomorphic to [0, 1], then the boundary points
are contained in P

∐
R.

For each point in P
∐
R there exists a component of |τ | ∪ |σ| with this point

as boundary point. Since components of type [0, 1[ do not exist, the component
has a second boundary point in P

∐
R. 2

We denote the bridge in (5.5) by τ ∧sigma. The components of |τ |∪ |σ| which
are homeomorphic to S1 are called cycles, the components which are homeomor-
phic to ]0, 1[ are called snakes.

(5.6) Remark. Let H = Gx be the subgroup of elements which map the com-
ponent x into itself. Then H acts effectively and properly on the one-dimensional
manifold x. Therefore we have, up to H-homeomorphism, the following possibil-
ities:
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(1) Suppose x ∼= S1. Then H ∼= ZZ/m or H ∼= D2m,m ≥ 1, and the action is
by the usual action of a subgroup of O(2).

(2) Suppose x ∼= IR. Then H ∼= ZZ or H ∼= D∞ and the action is by the usual
action as a subgroup of the group of affine transformations. ♥

Let Z/τ, σ) denote the orbit set of the components of |τ |∪ |σ| which are cycles
or snakes. The G-orbits of components in Z(τ, σ) are counted according to types.
The type of a component x consists of the conjugacy class of Gx together with
the Gx-homeomorphism type of the Gx-action. The group ZZ/2 has to different
actions on S1, by rotation or by reflection. (In the latter case it is the groupD2.) It
is an observation of H. Reich [??] that these two actions should be distinguished.

Let C denote the set of possible types. We denote by k(c, τ, σ) the number of
elements in Z(τ, σ) of type c.

After these preparations we define the category F (G) of G-bridges. The objects
of F (G) are the G-sets as above, i. e. with finite isotropy groups, finte orbit set
and effictive action on orbits.

We fix a ground ring K. The morphism set Mor(P,Q) is the free K-module on
the set of G-equivariant (P,Q)-bridges.

In order to define the composition of morphisms we fix a map d: C → K,
called the parameter function. The composition of morphisms Mor(Q,R) ×
Mor(P,Q) → Mor(P,R) is assumed to be K-bilinear. The composition of bridges
is defined to be

τ ◦ σ
∏
c∈C

d(c)k(c,τ,στ ∧ σ.

The identity P → P is represented by the bridge ι: P
∐
P → P

∐
P which

connects i ∈ P vertically with i ∈ P . We have |σ| ∪ |ι| ∼= |σ| and |ι| ∪ |σ| ∼= |σ|,
if defined.

Associativity of composition follows from a geometrical consideration: The
cycles and snakes of |τ | ∪ |σ| ∪ |ρ| are those of |τ | ∪ |σ|, plus those of |σ| ∪ |ρ|,
plus those of |τ ∧ σ| ∪ |ρ| (equal to those of |τ | ∪ |σ ∧ ρ|).

We shall mostly work with suitable subcategories of F (G). For instance, we
could use only free G-sets. Or we restrict the morphisms; this will be the case in
the Temperley-Lieb categories.

The composition of bridges with only vertical strings is again a bridge of this
form. No cycles or snakes appear. The vertical (P, P )-bridges under composition
can be identified with the group of G-equivariant permutations of P . We describe
this group.
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6. Braid groups of type B

The braid group ZBn associated to the Coxeter graph Bn is, by definition, the
group generated by t, g1, . . . , gn−1 with relations

(6.1)

(1) gigjgi = gjgigj, |i− j| = 1
(2) gigj = gjgi, |i− j| ≥ 2
(3) tgi = git, i ≥ 2
(4) tg1tg1 = g1tg1t.

For certain applications we need other presentations of this group.

Let Z ′Bn be the group with generators c, g1, . . . , gn−1 and relations

(6.2)

(1) gigjgi = gjgigj, |i− j| = 1
(2) gigj = gjgi, |i− j| ≥ 2
(3) cgi = gi−1c, i ≥ 2,
(4) c2g1 = gn−1c

2.

We abbreviate g = gn−1gn−2 · · · g1.

(6.3) Proposition. The assignment ϕ(gi) = gi, 1 ≤ j ≤ n−1, and ϕ(t) = g−1c
defines an isomorphism ϕ: ZBn → Z ′Bn.

Proof. The relations (1) and (2) yield in both groups

(6.4) gi−1g = ggi, i > 1.

We define in ZBn (resp. Z ′Bn) an element c (resp. t) by gt = c. From (1), (2)
and (2.4) we see that the relations cgi = gi−1c and git = tgi are equivalent for
i > 1.

We set h = gn−1 · · · g2, k = gn−2 · · · g1 and infer from (2.4)

(6.5) gh = kg.

We use this to show that c2g1 = gn−1c
2 and tg1tg1 = g1tg1t are equivalent,

provided (1), (2), and (3) hold. We compute

g−1
n−1c

2g1 = g−1
n−1gn−1kthg1tg1 = khtg1tg1

c2 = gthg1t = ghtg1t = kgtg1t = khg1tg1t

and see the equivalence. 2

The braid group ZÃn−1 of the Coxeter graph with n vertices Ãn−1 has, by
definition, generators g1, . . . , gn and relations

(6.6)
gigjgi = gjgigj, m(i, j) = 3
gigj = gjgi, m(i, j) = 2.

Indices will be considered modn in this case. We have m(i, j) = 3 if and only if
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i ≡ j ± 1 modn. All this holds for n ≥ 3. For n = 2, the group is the free group
generated by g1 and g2.

The graph Ãn−1 has an automorphism which permutes the vertices cyclically.
We have an induced automorphism s of ZÃn−1 given by

s(gi) = gi−1, imodn.

The n-th power of s is the identity.
We use s to form the semi-direct product

(6.7) ZÃn−1 → Gn → ZZ;

the generator 1 ∈ ZZ acts through s on ZÃn−1. The semi-direct product is the
group structure on the set ZÃn−1×ZZ defined by (x,m)·(y, n) = (x·sm(y),m+n).
The group Gn has the following description by generators and relations. Let G′

n

denote the group with generators s, g1, . . . , gn and relations (2.6) together with

(6.8) sgi = gi−1s, imodn.

(6.9) Proposition. The assignment ψ(gi) = (gi, 0) and ψ(s) = (e, 1) yields an
isomorphism ψ: G′

n → Gn (neutral element e).

Proof. One verifies that ψ is compatible with relations (2.6) and (2.8). This
is obvious for (2.6). The relation (e, 1)(x, 0)(e, 1)−1 = (s(x), 0) is used to show
compatibility with (2.8).

An element x ∈ ZÃn−1 has an image x′ ∈ G′
n, induced by gi 7→ gi. This

assignment has the property (s(x))′ = sx′s−1. We have the HomomorphismGn →
G′

n, (x,m) 7→ x′sm by (1.4). It is inverse to psi. 2

(6.10) Proposition. The assignment α(gi) = gi, 1 ≤ i ≤ n− 1, and α(c) = s
defines an isomorphism α: Z ′Bn → G′

n.

Proof. The assignment is compatible with the relations of Z ′Bn, since

α(c2g1c
−2) = s2g1s

−2 = sgns
−1 = gn−1.

An inverse to α is induced by the assignment β(gi) = gi, β(gn) = cg1g
−1, and

β(s) = c. In order to see that β is well defined, one has to check, in particular,
the relations

gn−1gngn−1 = gngn−1gn, g1gng1 = gng1gn.

In the first case, this amounts to the equalitiy of

gn−1cg1c
−1gn−1 = c2g1c

−1g1cg1c
−2

and
cg1c

−1gn−1cg1c
−1 = cg1cg1c

−1g1c
−1.

We compute

cg1g2g1c
−1 = cg2g1g2c

−1 = cg2c
−1cg1c

−1cg2c
−1 = g1cg1c

−1g1
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and hence
c(g1cg1c

−1g1)c
−1 = c2g1g2g1c

−2.

On the other hand, g1c
−1g1cg1 = g1g2g1. This yields the desired equality.

The second relation above leads to the same situation. 2

If we combine the foregoing, we obtain a semi-direct product

(6.11) ZÃn−1 → ZBn → ZZ.

In terms of the original generators, the inclusion ZÃn−1 ⊂ ZBn is given by

(6.12) gn 7→ gtg1t
−1g−1; gi 7→ gi, 1 ≤ i ≤ n− 1.

The homomorphism ZBn → ZZ in (2.14) is given by gi 7→ 0 and t 7→ 1.
Different types of Weyl groups (= Coxeter groups) are related to these braid

groups. We have the Coxeter groups WÃn−1 and WBn associated to the graphs
Ãn−1 and Bn. In addition, we will also use a group W∞Bn. It is obtained from
ZBn by adding the relations g2

j = 1, but no relation for t. The reason for intro-
ducing this group is a semi-direct product in analogy to (2.14). The arguments
which lead to (2.14) also give a semi-direct product

WÃn−1 → W∞Bn → ZZ.

We give another interpretation and describe these groups as groups of permuta-
tions.

Let tn: ZZ → ZZ, x 7→ x+n be the translation by n. Let Pn denote the group of
tn-equivariant permutations σ: ZZ → ZZ. Equivariance means σ(i+n) = σ(i) +n.
Hence σ induces σ: ZZ/n → ZZ/n, and σ 7→ σ is a homomorphism π: Pn → Sn

onto the symmetric group Sn.

(6.13) Proposition. The kernel of π is isomorphic to ZZn. The group Pn is
isomorphic to the semi-direct product ZZn → P ′

n → Sn in which Sn acts on ZZn by
permutations.

Proof. Let σ1 ∈ Pn. Then there exists a permutation α of {1, . . . , n} and an n-
tuple (k1, . . . , kn) ∈ ZZn such that σ(i+tn) = α(i)+(ki+t)n. We denote this map
by σ1 = σ(α; k1, . . . , kn). Suppose σ2 = σ(β; l1, . . . , ln) is another permutation
written in this form. Then

σ2 ◦ σ1 = σ(βα; lα(1) + k1, . . . , lα(n) + kn).

If we think of P ′
n = Sn × ZZn as sets, then the desired isomorphism is given by

(α; k1, . . . , kn) 7→ σ(α; k1, . . . , kn). 2

The semi-direct product P ′
n has a normal subgroup Q′

n which is given as a
semi-direct product

(6.14) N → Q′
n → Sn
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with N = {(x1, . . . , xn) | ∑xi = 0} ⊂ ZZn. The homomorphism

ε: P ′
n → ZZ, (α; k1, . . . , kn) 7→

∑
ki

is a surjection with kernel Q′
n. The canonical sequence

(6.15) Q′
n → P ′

n → ZZ

is itself a semi-direct product; the assignment 1 7→ (id; 1, 0, . . . , 0) gives a splitting
of ε. Under the isomorphism (2.13) the subgroup Q′

n corresponds to the subgroup

Qn = {σ ∈ Pn | 1 + 2 + · · ·+ n = σ(1) + · · ·+ σ(n)}.

(6.16) Proposition. The groups W∞Bn and Pn are isomorphic. The groups
WÃn−1 and Qn are isomorphic. The element gi is mapped to the transposition
(i, i + 1), i ∈ nZZ. The element t is mapped to σ(i) = i + n for i ≡ 1 modn and
σ(j)j otherwise.

The proof is given after the proof of (2.21). In the proof of (2.17) we use the
following:

(6.17) Lemma. The elements

t0 = t, t1 = g1tg1, . . . , tn−1 = gn−1 . . . g2g1tg1g2 . . . gn−1

of the braid group ZBn pairwise commute.

Proof. We set
g(i, j) = gigi+1 . . . gj, i ≤ j

g(i, j) = gigi−1 . . . gj, i ≥ j.

The braid relations imply immediately

g(1, j)gj+1g(j, 1) = g(j + 1, 2)g1g(2, j + 1)

and (2.5)
g(2, j + 1)g(1, j + 1) = g(1, j + 1)g(1, j).

By commutativity of gj-elements, it suffices to show titi+1 = ti+1ti. We compute

tjtj+1 = g(j, 1)tg(1, j)gj+1g(j, 1)tg(1, j + 1)

= g(j, 1)tg(j + 1, 2)g1g(2, j + 1)tg(1, j + 1)

= g(j, 1)g(j + 1, 2)tg1tg(2, j + 1)g(1, j + 1)

= g(j, 1)g(j + 1, 2)[tg1tg1]g(2, j + 1)g(1, j).

A similar computation works for tj+1tj. 2

The semi-direct product relation (2.13, (2.17) between W∞Bn and WAn−1

has a counterpart for the braid groups. The homomorphism

λ: Kn → ZAn−1, gj 7→ gj, t 7→ 1
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splits by gj 7→ gj. Therefore we have a semi-direct product

(6.18) ZPn → ZBn → ZAn−1.

The elements

y0 = t, , y1 = g1tg
−1
1 , . . . , yn−1 = gn−1 . . . g1tg

−1
1 . . . g−1

n−1

are contained in the kernel Kn of λ.

(6.19) Lemma. The elements yj have the following conjugation properties with
respect to ZAn−1:

(1) g−1
k yjgk = yj, k > j, k < j − 1

(2) g−1
k ykgk = yk−1,

(3) g−1
k yk−1gk = yk−1yky

−1
k−1.

Proof. (2) follows directly from the definitions.

(1) If k > j, then gk commutes with every generator in the definition of yj. In
the case k < j − 1 one uses the commutation relation between generators and
gk+1gkg

−1
k+1 = g−1

k gk+1gk (and the inverse) to cancel g−1
k and gk.

(3) is proved by induction on k. The verification for k = 0 is easy. We calculate
with (1) and (2)

g−1
k ykyk+1y

−1
k gk = yk−1yk+1y

−1
k−1 = gk+1yk−1yky

−1
k−1g

−1
k+1.

On the other hand, by (1) and (2)

g−1
k+1g

−1
k g−1

k+1ykgk+1gkgk+1 = g−1
k g−1

k+1g
−1
k ykgkgk+1gk

= g−1
k g−1

k+1yk−1gk+1gk

= g−1
k yk−1gk.

This yields the induction step. 2

(6.20) Proposition. The group Kn is the free group generated by y0, . . . , yn−1.

Proof. By the previous Lemma, the group K0
n generated by the y0, . . . , yn−1 is

invariant under conjugation by elements of ZAn−1. Since t ∈ K0
n and t together

with ZAn−1 generates ZBn, we must have equality K0
n = Kn.

Let Fn denote the free group generated by y0, . . . , yn−1. We define homomor-
phisms γ1, . . . , γn−1: Fn → Fn by immitating (2.20):

(1) γk(yj) = yj, k > j, k < j − 1
(2) γk(yk) = yk−1,
(3) γk(yk−1) = yk−1yky

−1
k−1.

We claim:

(6.21) Lemma. The γj are automorphisms and satisfy the braid relations

γiγjγi = γjγiγj, |i− j| = 1, and γiγj = γjγi, |i− j| ≥ 2.

Proof. First we check that the homomorphism δk: Fn → Fn
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(1) δk(yj) = yj, k > j, k < j − 1
(2) δk(yk−1) = yk,
(3) δk(yk) = y−1

k yk−1yk

is inverse to γk. Hence γk is an isomorphism. Since γk fixes yj for j /∈ {k− 1, k},
the second braid relation is obviously satisfied. For the first relation, the reader
may check the following values of γ1γ2γ1 and γ2γ1γ2 on y0, y1, y2:

y0 7→ y0y1y2y
−1
1 y−1

0 , y1 7→ y0y1y
−1
1 , y2 7→ y0.

We use this Lemma to define a semi-direct product

(6.22) Fn → Γn → ZAn−1,

in which gj ∈ ZAn−1 acts on Fn through δj. By (2.19) and K0
n = Kn, we have a

canonical epimorphism µ: Γn → ZBn. We show that µ is an isomorphism. As a
set, Γn = Fn × ZAn−1. An inverse to µ has to send gj 7→ (1, gj) and t 7→ (y0, 1).
We have to check that this assignment is compatible with the relations of ZBn.
This is obvious for the gj. Moreover:

tg1tg1 7→ (y0, 1)(1, g1)(y0, 1)(1, g1)

= (y0, g1)(y0, g1)

= (y0δ1(y0), g
2
1)

= (y0y1, g
2
1)

g1tg1t 7→ (1, g1)(y0, 1)(1, g1)(y0, 1)

= (y1, g1)(y1, g1)

= (y1δ(y1), g
2
1)

= (y0y1, g
2
1).

This finishes the proof of Proposition (2.21). 2

Proof of (2.17). The elements tj of (2.18) and the elements yj coincide in W∞Bn,
since gj = g−1

j in this group. Lemma (2.20) shows that conjugation y 7→ g−1
k ygk

acts on the set (y0, . . . , yn−1) by interchanging yk−1 and yk. The proof of (2.21)
is now easily adapted to show the isomorphism W∞Bn

∼= P ′
n. This isomorphism

restricts to an isomorphism WÃn−1
∼= Q′

n. 2

We now apply the previous results to Hecke algebras. We have the Hecke alge-
bras HAn−1, HÃn−1, and HBn associated to the corresponding Coxeter graphs.
We consider algebras over the ground ring K. The first one is given by genera-
tors g1, . . . , gn−1, the braid relations between them and the quadratic relations
g2

j = (q − 1)gj + q with a parameter q ∈ K. The second one has generators
g1, . . . , gn, the braid relations (2.8) and the same quadratic relations. The alge-
bra HBn has generators t, g1, . . . , gn−1, the braid relations (2.1), the quadratic
relations above for the gj and t2 = (Q− 1)t+Q with another parameter Q ∈ K.
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If we omit the quadratic relation for Q, then we obtain the definition of H∞Bn.
This is not a Hecke algebra in the formal sense, i. e. associated to a Coxeter
graph. It is a deformation of the group algebra of W∞Bn.

We know from Hecke algebra theory that an additive basis of the Hecke algebra
is in bijective correspondence with the elements of the Coxeter group. There is
a similar relation between W∞Bn and H∞Bn. In order to derive it, we relate
HÃn−1 and H∞Bn.

The algebra HÃn−1 has an automorphism τ given by τ(gi) = gi−1 (indices
modn). We define the twisted tensor product over the ground ring K

(6.23) HÃn−1 ⊗ K[τ, τ−1] =: H∞
n

by the multiplication rule (x ⊗ τ k) · (y ⊗ τ l) = (x · τ k(y), τ k+l) for k, l ∈ ZZ and
x, y ∈ HÃn−1.

(6.24) Proposition. The algebra (2.24) is canonically isomorphic to H∞Bn.

Proof. We use the isomorphism (2.3) to redefine the algebra H∞Bn by gener-
ators c, g1, . . . , gn−1 relations (2.2) and the quadratic relations for the gj. The as-
signment gj 7→ gj⊗1, c 7→ 1⊗τ induces a homomorphismH∞Bn → HÃn−1⊗H∞

n .
We have a homomorphism HÃn−1 → H∞Bn, x 7→ x′ induced by gj 7→ gj

with gn = gtg1t
−1g−1 in H∞Bn (see (2.12)). This extends to a homomorphism

H∞
n → H∞Bn by x ⊗ τ k 7→ x′ · ck, since τ(y)′ = cy′c−1. These homomorphisms

are inverse to each other. 2

(6.25) Corollary. Suppose (bj | j ∈ J) is a K-basis of HÃn−1. Then (b′jc
k | j ∈

J, k ∈ ZZ) is a K-basis of H∞Bn. 2
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7. Braids of type B

We use a theorem of Brieskorn [??] to derive some geometric interpretations of
the braid group ZBn. The starting point is the reflection representation of the
Weyl group WBn. This group is a semi-direct product

(7.1) (ZZ/2)n → WBn → Sn.

It acts on complex n-space Cn as follows:
(1) Sn acts by permuting the coordinates.
(2) (ZZ/2)n act by sign changes (z1, . . . , zn) 7→ (ε1z1, . . . , εnzn), εi ∈ {±1}.

This group contains the reflections in the hyperplanes

zi = ±zj, i 6= j; and zj = 0.

Let X denote the complement of these hyperplanes. From the theory of finite
reflection groups it is known, that W = WBn acts freely on X. Brieskorn [??]
shows:

(7.2) Theorem. The braid group ZBn is isomorphic to the fundamental group
π1(X/W ) of the orbit space X/W . 2

If we think of WBn as the Coxeter group with generators t, g1, . . . , gn−1, then
gj acts as the transposition (j, j + 1) and t as z1 7→ −z1.

We use (5.2) to give several interpretations of ZBn by braids.
We remove the hyperplanes zj = 0 from Cn. It remains the n-fold product

C∗× · · · ×C∗ = C∗n. Removal of the remaining reflection hyperplanes yields the
space X of n-tuples (zj) ∈ C∗n with pairwise different squares z2

j .
The configuration space Cn(C∗) is the space of subsets of C∗ with cardinality

n. As topological space it is defined as Y/Sn where Y ⊂ C∗n is the set of n-tuples
(yj) with pairwise different components.

(7.3) Proposition. X/W is homeomorphic to Cn(C∗).

Proof. We arrive at X/W in two steps: First we form Y ′ = X/(ZZ/2)n and then
we divide out by the Sn-action. The map (zj) 7→ (z2

j ) yields an Sn-equivariant
homeomorphism Y ′ → Y . 2

By (5.2) and (5.3), ZBn
∼= π1(C

n(C∗)). The elements of π1(C
n(C∗)) will be

interpreted as braids in the cylinder (cylindrical braids). We take (1, ω, · · · , ωn−1),
ω = exp(2πi/n), as base point in Cn(C∗). A loop in Cn(C∗) lifts to a path

w: I → Y, t 7→ (w1(t), . . . , wn(t))

with this initial point. Thus we have
(1) w(0) = (1, ω, . . . , ωn−1).
(2) w(1) = (σ(1), . . . , σ(ωn−1)), with a permutation σ of the set ZZ/n =

{1, ω, . . . , ωn−1}.
(3) For j 6= k we have wj(t) 6= wk(t).
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These data yield a braid zw with n strings in C∗× [0, 1] from ZZ/n×0 to ZZ/n×1

zw(t) = {w1(t), . . . , wn(t)} × t.

Homotopy classes of loops correspond to isotopy classes of such braids. Mul-
tiplication of loops corresponds to concatenation of braids, as usual. Thus we
have:

(7.4) Theorem. The braid group ZBn is the group of n-string braids in the
cylinder C∗ × [0, 1]. 2

A second interpretation is by symmetric braids in C× [0, 1]. This was already
used in [??]. We take the base point (1, 2, . . . , n) ∈ X. We lift a loop in X/W to
a path

w: I → X, t 7→ (w1(t), . . . , wn(t)).

Then we have:
(1) w(0) = (1, 2, . . . , n).
(2) w(1) = (±σ(1), . . . ,±σ(n)) with a permutation σ of {1, . . . , n}.
(3) For j 6= k we have wj(t) 6= ±wk(t).
(4) wj(t) 6= 0.

Let [±n] = {−n, . . . ,−1, 1, . . . , n}. The data yield a braid with 2n strings in
C× [0, 1] from [±n]× 0 to [±n]× 1, namely

t 7→ {−wn(t), . . . ,−w1(t), w1(t), . . . , wn(t)} × t.

These braids are ZZ/2-equivariant with respect to (z, t) 7→ (−z, t) and are there-
fore called symmetric. The theorem of Brieskorn thus gives:

(7.5) Theorem. The group ZBn is isomorphic to the group of symmetric braids
with 2n strings. 2

Symmmetric braids are drawn as ordinary braids but with additional symme-
try with respect to the axis 0 × [0, 1]. Here are figures for the generators t and
gj.

??
The symmetry is not the reflection in the axis, but corresponds to a spacial

rotation about this axis. The relation tg1tg1 = g1tg1t appears in this context as
a generalized Reidemeister move.

Braids in the cylinder with n strings can be visualized as ordinary braids with
n + 1 strings — the axis of the cylinder is the additional string. This method
has been used by Lambropoulou [??]. It allows the reduction of Bn-type braids
to ordinary Artin braids, also with respect to proofs. The theorem of Brieskorn
is then not used.

The twofold covering, ramified along the axis, of the cylinder produces a sym-
metric braid from a cylindrical one — and vice versa.

The cylinder C∗× [0, 1] has the universal covering C× [0, 1]. Lifting cylindrical
braids with n strings produces n-periodic infinite braids in C× [0, 1] from ZZ× 0
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to ZZ × 1. They are invariant with respect to the translation (z, t) 7→ (z + n, t).
This gives yet another interpretation of ZBn by n-periodic braid pictures.

The relation between ZBn and ZÃn−1 has the following geometric origin or
counterpart. The map

C∗n → C∗, (z1, . . . , zn) 7→ z1 · . . . · zn

is Sn-equivariant and induces therefore a map from the configuration space

α: Cn(C∗) → C∗.

(7.6) Lemma. The map α is a fibre bundle.

Proof. Let
H = {(z1, . . . , zn) ∈ C∗n |

∏
zj = 1}.

This is an Sn-invariant subset. The map

γ: C∗ ×ZZ/n H → C∗n, (z, z1, . . . , zn) 7→ (zz1, . . . , zzn)

is an Sn-equivariant homeomorphism. Thus γ is the fibre bundle with fibre H
assoziated to the ZZ/n-principal bundle C∗ → C∗, z 7→ zn. In C∗n we have to
remove the subset

C = {(z1, . . . , zn) | there exists i 6= j such that zi = zj}.

Let D = H ∩ C. Then γ induces an Sn-equivariant homeomorphism

γ: C∗ ×ZZ/n (H \D) → C∗n \ S.

This yields the fibre bundle description

C∗ ×ZZ/n (H \ T )/Sn → C∗

for the configuration space. 2

We apply the fundamental group to this fibration and obtain the exact se-
quence

1 → kernelα∗ → ZBn → ZZ → 0.

It can be shown that this is the sequence (2.11), i. e. ZÃn−1 is the fundamental
group of the fibre of α.

Our next aim is to describe an additive basis of the Hecke algebra H∞Bn by
geometric means, i. e. by specifying a certain canonical set of basic braids.

A cylindrical braid with n strings is called descending, if for i < j the i-th
string is always overcrossing the j-th string. The i-th string is the one starting
at ωi, 0 ≤ i ≤ n − 1. Overcrossing means the following: We look radially and
orthogonally from infinity onto the axis. The braid is in general position if we
only see transverse double points. The first string we meet, coming from infinity,
is the overcrossing one.
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(7.7) Theorem. The descending braids form a K-basis of the algebra H∞Bn.
The descending braids with winding number zero form a K-basis of the algebra
HÃn−1.

We use (2.11) to reduce the first statement to the second. For the latter Hecke
algebra we have the canonical basis related to the elements of reduced form in
the Weyl group, and elements of the Weyl group will be shown to correspond
to descending braids. We use the description of the Weyl group elements as n-
periodic permutations of ZZ. We represent such a permutation by n straight lines
c1, . . . , cn in the strip IR × [0, 1] starting at {1, . . . , n} × 0 such that ci and cj
have at most one crossing, and then repeat with period n. By slightly moving the
endpoints of the cj we can assume that the curves are in general position. The
resulting crossings are used to write the permutation as a product of reflections.
This product is reduced in the sense of Coxeter group theory (see (??)). It is
geometrically obvious that the same configuration of crossings can be realized by
a descending braid.

(7.8) Proposition. The set

C = {yk
n−1gn−1gn−2 . . . gj | k ∈ ZZ, 1 ≤ j ≤ n}

is a system of representatives for the left cosets of the inclusion W∞Bn−1 ⊂
W∞Bn.

Proof. This is an immediate consequence of the semi-direct product descrip-
tion. The powers of yn−1 are representatives for cosets of Vn−1 ⊂ Vn, and the
products gn−1 . . . gj are representatives for the cosets of Sn−1 ⊂ Sn. 2

We use this Proposition to derive the following result of Lambropoulou and
Przytycki which was proved by them in a purely algebraic manner. The relation
to standard Hecke algebra bases and the interpretation by descending braids
seems more transparent, though.

(7.9) Theorem. Let B be the canonical basis of H∞Bn−1. Then {bc | b ∈
B, c ∈ C} is a basis of H∞Bn.

Proof. Represent a basis element of H∞Bn by a descending braid. 2

Recall the construction and definition of a Markov trace in section 2. The
last Theorem gives immediately the uniqueness of a Markov trace with given
parameters.

(7.10) Corollary. There exists a unique Markov trace on H∞Bn with given
parameters (s(k) | k ∈ ZZ) and z. 2

From a Markov trace (Un) on ZA one obtains a link invariant. Let x̂ denote
the Alexander closure of the braid x ∈ ZAn−1. Write x as a product of sym-
bols (crossings) g1, g

−1
1 , . . . , gn−1, g

−1
n−1, and let w(x) denote the resulting sum of

exponents (writhe of x). Then a link invariant P is obtained by setting

P (x̂) := α−w(x)βnUn(x)
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for x ∈ ZAn−1. Related are Markov traces Tr = (Trn) on Hecke algebras HA =
(HAn). These are K-linear maps Trn: HAn−1 → K such that

(1) Trn+1|HAn−1 = Trn,
(2) TRn+1(xxn) = zTrn(x), x ∈ HAn−1

with a parameter z ∈ K. Here we use the names x1, . . . , xn−1 for the standard
generators of the Hecke algebra because we want to distinguish them from the
gj. The Hecke algebras are defined with a parameter q ∈ K∗ which enters the
quadratic relation x2

j = (q − 1)xj + q. The relation between the two notions of
Markov traces is the following.

(7.11) Proposition. Let q = p2 and β(p − p−1) = α − α−1 with p2 6= 1. Let
U = (Un) be a Markov trace on ZA with parameters α, β, as defined in section
3. Let ι: ZAn → (HAn)∗ be the homomorphism gj 7→ p−1xj. Then there exists a
unique Markov trace Tr on HA such that Trn ◦ ι = Un. It has parameter z =
p−1αβ−1. The corresponding link invariant satisfies the skein relation αP (L+)−
α−1P (L−) = (p− p−1)P (L0). 2

Lambropoulou [??] has proved a Markov theorem for links of type B (sym-
metric links). The statement is exactly as in the classical case, here called of type
A. A Markov trace (T n: TBn → K) therefore yields an invariant of B-links by
setting

P (x̂) = α−w(x)βnT n(x)

for x ∈ ZBn. Here w(x) still counts the exponent sum in terms of the generators
gj.
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8. Traces on groups

Let G be a group and K a commutative ring. A (K-valued) trace on G is a function
T : G→ K such that for all g, h ∈ G

(8.1) T (gh) = T (hg).

Equivalently, a trace is a function constant on conjugacy classes. A trace extends
to a K-linear map T : KG→ K from the group algebra KG such that (1.1) holds
for any two elements g, h in the group algebra.

Suppose τ : G → G is an automorphism and T a trace. We call T (strongly)
τ -invariant if for all g, h ∈ G the relation

(8.2) T (g · τ(h)) = T (g · h)

holds. If we set g = 1, we have the ordinary τ -invariance T (τ(h)) = T (h). If
T is τ1- and τ2-invariant, then also τ−1

1 - and τ1τ2-invariant. If Γ is a group of
automorphisms of G, then a trace is called Γ-invariant, if T is τ -invariant for
each τ ∈ Γ. It suffices to check Γ-invariance for a generating set of Γ.

Suppose Ti is a trace on Gi (i = 1, 2). Then (g1, g2) 7→ T1(g1)T2(g2) is a trace
on G1 ×G2. We want to generalize this to semi-direct products.

Let α: Γ → AutG be a group of G-automorphisms. The semi-direct product
G×α Γ is a group structure on the set G× Γ defined by

(g, σ)(h, τ) := (g · σ(h), στ).

In this group structure we have

(8.3) (1, σ)(g, 1)(1, σ)−1 = (σ(g), 1).

We will use the following fact several times.

(8.4) Lemma. A pair of group homomorphisms λ: G → H and µ: Γ → H
defines via (g, σ) 7→ λ(g)µ(σ) a homomorphism ϕ: G ×α Γ → H if and only if
for all g ∈ G and σ ∈ Γ the relation λ(σ(g)) = µ(σ)λ(g)µ(σ)−1 holds. Each
homomorphsm ϕ has this form for a unique pair (λ, µ). 2

Is α: Γ → Aut (G) is an antihomorphism, we define the semi-direct product
Γ α×G with multiplication (σ, g)(τ, h) = (στ, τ(g)h).

The following is immediately verified from the definitions.

(8.5) Proposition. Let S be a Γ-invariant trace on G and U a trace on Γ.
Then

T : G×α Γ → K, (g, σ) 7→ S(g)U(σ)

is a trace on G×α Γ. 2

If ϕ: G → H is a group homomorphism and T a trace on H, then T ◦ ϕ is a
trace on G. Any function T : G→ K on an abelian group G is a trace. Characters
of finite dimensional representations are traces.


