
On tensor representation of knot algebras

Tammo tom Dieck

The main purpose of this work is to communicate certain R-matrix relations.
They are designed to yield tensor representations of (extended) Hecke algebras
of Coxeter type B. We also define various Birman-Wenzl algebras of type B and
derive the corresponding R-matrix identities. These identities are also the basis
for representations of tangle categories of type B. The tensor representations
yield, via quantum traces, Markov traces of the algebras and therefore B-type
analogues of Jones polynomials, Kauffman polynomials and the like. The tangle
theory will be the subject of another paper. We also collect some material for
later use in this series of papers. This is Part V of the series Knot Algebra and
Root Systems.

1. The four braid relation

Let W be a module over the integral domain K. We study automorphisms X and
Y of W which satisfy the four braid relation

(1.1) XYXY = Y XY X.

We are particularly interested in the following case:
(1)The automorphism X is an R-matrix; this means W = V ⊗ V for a free

module V with basis v1, . . . , vn and X satisfies the Yang-Baxter equation

(1.2) (X ⊗ 1)(1⊗X)(X ⊗ 1) = (1⊗X)(X ⊗ 1)(1⊗X).

(2) The automorphism Y has the form F ⊗ 1 for an automorphism F of V .

The interest in this case comes from the representation theory of braid groups.
Recall that the braid group ZBn associated to the Coxeter graph Bn

(1.3)
r r r r
t g1 g2 gn−1

p p p p p p p p p p4
Bn

with n vertices has generators t, g1, . . . , gn−1 and relations:

(1.4)

tg1tg1 = g1tg1t
tgi = git i > 1
gigj = gjgi |i− j| ≥ 2

gigjgi = gjgigj |i− j| = 1.
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Given automorphisms F and X as above, we obtain a tensor representation of
ZBn on the n-fold tensor power V ⊗n of V by setting:

(1.5)
t = F ⊗ 1⊗ · · · ⊗ 1
gi = 1⊗ · · · ⊗X ⊗ · · · ⊗ 1.

TheX in gi acts on the factors i and i+1. Later we will study the cases when such
representations of ZBn induce representations of suitable Hecke algebras and
Birman-Wenzl algebras. Moreover, we extend this to representations of tangle
categories.

We point out that any two automorphisms X, Y : W → W which satisfy (1.1)
yield a representation of ZB2 on W .

We begin with a prototype computation which is used later on several occa-
sions. We think of X and Y as given by (2, 2)-matrices of the following type:

(1.6) X =

(
Z 0
0 qI

)
, Y =

(
A B
C D

)
.

Here q ∈ K∗ (the units of K) and I is the identity matrix. The matrices Z,A
(and qI,D) are square matrices of the same size, respectively. A computation of
(1.1) in block form yields:

(1.7) Proposition. The relation (1.1) holds if and only if the following equal-
ities hold:
(I) ZAZA+ qZBC = AZAZ + qBCZ
(II) Z(AZB + qBD) = q(AZB + qBD)
(III) (CZA+ qDC)Z = q(CZA+ qDC). 2

Equation (II) means that the columns of AZB+qBD are eigenvectors of Z for
the eigenvalue q (if they are nonzero). Equation (III) has a similar interpretation
for the row vectors of CZA+ qDC (or consider the transpose).

(1.8) Corollary. If A and D are zero, then (1.1) holds if and only if BC com-
mutes with Z. 2

As a very special case, we think of X and Y in (1.6) as ordinary (2, 2)-matrices
over K. Then Z ∈ K∗ and det(Y ) = AD −BC ∈ K∗. From (1.7) we obtain:

(1.9) Proposition. Let X and Y in (1.6) be (2, 2)-matrices. Then (1.1) holds
in the trivial cases Z = q or B = C = 0. If Z 6= q and B (or C) are nonzero,
then (1.1) holds if and only if AZ = −qD. 2

Suppose we are still in the situation of (1.9). The element ζ = XYXY gen-
erates the center of ZB2. Under the assumption AZ = −qD, the matrix of ζ
is

(1.10) ζ = − det(X) det(Y )I.

If Y has the characteristic polynomial (Y − b1)(Y − b2), then we compute (with
Tr(Y ) = b1 + b2)
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(1.11) A = − Z

q − Z
Tr(Y ), D = − q

Z − q
Tr(Y ), b1b2 = AD −BC.

The group ZB2 has the presentation 〈X, Y | XYXY = Y XY X 〉. Another
presentation is Z ′B2 = 〈X,C | C2X = XC2 〉. An isomorphism Z ′ → Z is given
by X 7→ X, C 7→ XY . The element C generates the center. The computations
above yield the following result:

(1.12) Proposition. Let K be a field. Suppose given (a1, a2), (b1, b2) ∈ K∗2 with
a1 6= a2 and b1 6= b2. Then there exists an irreducible twodimensional representa-
tion of ZB2, unique up to isomorphism, such that X, Y have the characteristic
polynomial (t− a1)(t− a2), (t− b1)(t− b2), respectively.

Proof. The characteristic polynomials are invariants of the isomorphism type.
We have shown above the existence of a representation where

X =

(
a1 0
0 a2

)
Y =

(
A B
C D

)

and (1.11) determines A,D and BC. Within the isomorphism type we can change
B,C to BU,CU−1. Hence we can normalize to B = 1. 2

2. R-matrices of type An

We now turn our attention to the standard R-matrices of quantum group theory.
We use the basis vij = vi⊗vj with lexicographical ordering. In order to get some
insight, we begin with the simplest non-trivial R-matrix

(2.1) X =


q

δ 1
1 0

q

 δ = q − q−1 6= 0.

As explained in section 1, we look for matrices

F =

(
a b
c d

)

such that with Y = F ⊗ 1 the four braid relation holds.

(2.2) Proposition. Suppose F is not a multiple of the identity. Then (1.1)
holds for the matrices X and F above if and only if a = 0.

Proof. We reorder the basis v12, v21, v11, v22. Then X has the form (1.6) with

Z =

(
δ 1
1 0

)
,
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and Y has the form (1.6) with

A = D =

(
a 0
0 d

)
, B = C =

(
0 b
c 0

)
.

We check the conditions (1.7). Equation (I) holds if and only if a2δ = adδ. Hence
either a = 0 or a = d. We compute AZB + qBD to be(

ac abδ + qbd
qac bd

)
.

Since (q, 1)t is the eigenvector for the eigenvalue q of Z, we must have, by (II),
that ac = 0 and ab = 0. In case a 6= 0, we arrive at a multiple of the identity. If
a = 0, then (II), and dually (III), are satisfied. 2

We now study the for braid relation for the standard R-matrix X associated
to the root system An−1, see e. g. [21, p. 171]. It is given by the linear map

(2.3) Xvij =


qvij i = j
vji i > j
vji + δvij i < j,

where 1 ≤ i, j ≤ n. (The case n = 2 is displayed in (2.1).)
Proposition (2.2) is a (weak) motivation for considering only matrices F =

(fij) which are bottom-right triangular, i. e. fij = 0 for i + j ≤ n. As a further
motivation for later assumptions, we mention the following computational results.

(2.4) Proposition. Suppose F = (fij) is bottom-right triangular. Then, in the
cases n = 3, 4, the relation (1.1) for Y = F ⊗ 1 and X as in (2.3) implies that
all elements of F which do not lie on one of the diagonals are zero. Moreover,
f33 = f44 in the case n = 4. 2

If a reader wants to check this: It suffices to consider the matrix positions
(5,6) in the case n = 3 and the positions (2,16) and (3,16) in the case n = 4. A
similar inspection should yield such a result for all n.

Because of (2.2) and (2.4), we only consider maps F of the following form

(2.5)
F (vj) = αjvj + βjvn+1−j j 6= n+1

2

F (vj) = avj j = n+1
2

where αj = 0 for 1 ≤ j < n+1
2

and αj = w for n+1
2
< j ≤ n. The a-term does not

appear for odd n.

(2.6) Theorem. Suppose F has the form (2.5) and X is given as in (2.3). Then
the four braid relation (1.1) holds in the case n = 2m. If n = 2m− 1, then (1.1)
holds if and only if a2 = βjβn+1−j + aw for all j 6= m.

Proof. For the proof we need a bit of organisation. We take advantage of the
fact that X and F have many zeros and repetitions. We have two involutions σ
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and τ on the set of indices J = {(i, j) | 1 ≤ i, j ≤ n}, namely σ(i, j) = (n+1−j, j)
and τ(i, j) = (j, i). Since στστ = τστσ, they formally generate the dihedral
group D8 of order 8. We decompose J into the orbits under this D8-action. We
have to consider 4 orbit types. Set n+ 1− i = i′.

Let n = 2m. Then we have orbits of type (i, i), (i′, i), (i, i′), (i′, i′) of length 4.
This is the orbit of (i, j) if i = j or i = j′. If i 6= j, j′, then the orbit of (i, j) has
length 8.

Let n = 2m− 1. Then we have the fixed point (m,m). There is another orbit
type of length 4, namely (m, j), (j,m), (j′,m), (m, j′) for j 6= m. The subspace
spanned by an orbit is invariant under X and Y . Therefore it suffices to verify
the four braid relation on these subspaces. The matrices involved depend only
on the isomorphism type of the orbit. Therefore we need only consider the cases
n = 3 and n = 4.

We present some details of the computation.
Let n = 3. We consider the subspace generated by v12, v21, v23, v32. The corre-

sponding matrices have the following form (we set β1 = v, β3 = u):

X =


δ 1 0 0
1 0 0 0
0 0 δ 1
0 0 1 0

 , Y =


0 0 0 u
0 a 0 0
0 0 a 0
v 0 0 w

 .

We compute the product

XY =


0 a 0 δu
0 0 0 u
v 0 aδ w
0 0 a 0

 .

and its square

(XY )2 =


0 0 aδu au
0 0 au 0
vaδ va a2δ2 + aw δvu+ aδw
va 0 a2δ aw

 .

If we transpose this matrix and interchange u and v we obtain (Y X)2. On the
other hand, we obtain by this procedure the same matrix if and only if a satisfies
a2 = aw + vu.

Let n = 4. We use the subspace generated by v12, v21, v13, v31, v24, v42, v34, v43.
Then X has the block diagonal matrix

X =


H

H
H

H

 , H =

(
δ 1
1 0

)
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and Y the matrix (with notation β1 = v1, β2 = v2, β3 = u2, β4 = u1)

Y =



0 0
0 u2

0 u1

0 0
0 0
0 v2

0 0
0 w

0 u1

0 0
0 0
v1 0

0 0
0 w

u2 0
0 0

0 0
v1 0

v2 0
0 0

w 0
0 w


.

Empty places contain, as always, a zero. These data yield the product:

XY =



0 u2

0 0
0 δu1

0 u1

0 v2

0 0
0 w
0 0

0 δu1

0 u1

v1 0
0 0

0 w
0 0

δu2 0
u2 0

v1 0
0 0

δv2 0
v2 0

wδ w
w 0


and its square

0 0 0 u1u2H

0 0 v2u1H u1wH

0 v1u2H zδH u2w(δH + I)

v1v2H v1wH v2w(δH + I) zδH + w2(δH + I)


.

This matrix does not change if we transpose it and interchange u and v. This
finishes the case n = 4. 2

(2.7) Remark. For n = 2m − 1, the matrix Y satisfies the equation Y 2 =
wY + z with z = βjβn+1−j for j 6= m. For n = 2m the matrix Y satisfies∏m

j=1(Y
2−wY −βjβn+1−j) = 0. Thus, in the generic case, the minimal polynomial

of Y has degree n. A similar result as (2.6) holds for the slightly more general
R-matrices in [21, p. 171]. Suppose q+q−1 is invertible in K. Then the eigenspace
S2(V ) of X for the eigenvalue q has the basis vij + q−1vji for i < j and vii; and
the eigenspace ∧2(V ) for the eigenvalue −q−1 has the basis vij − qvji, i < j. ♥

3. A three-dimensional example

We aim at results for the root systems Bn and Cn which are analogous to those
in section two. The case dimV = 3 seems to be exceptional and we study it in
detail. In any case, explicit computations in higher dimensions are difficult.
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We use the following R-matrix X.

q
δ 1

µ λ q−1

1 0
λ 1

δ 1
q−1 0

1 0
q

It uses

δ = q − q−1, µ = δ(1− q−1), λ = −p−1δ, q1/2 = p.

The inverse of X is obtained by reflection in the skew diagonal and replacement
of p by p−1. From this, the matrix

E1 =
X −X−1

δ
− 1

is computed to be:

−q−1 −p−1 −1

−p−1 −1 −p

−1 −p −q

We see that E1 has rank one. We have

(3.1) E2
1 = −(q + 1 + q−1)E1.

As in the previous section, we look for a (3,3)-matrix F such that with Y = F⊗1
the four braid relation (1.1) holds. We specify F in bottom-right triangular form

F =

 0 0 b2
0 a a2

b1 a1 b

 .
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The product Y X is computed to be the following matrix.

q−1b2
b2

b2q
a a2q

−1

aλ a a2

aδ a a2q
b1 a1 bq−1

b1δ a1λ b1 a1 b
b1µ b1λ a1δ b1q

−1 a1 bq

In order to test the braid relation we note: Since X is symmetric, XYXY is
obtained from Y XY X by transposition and interchange of the indices {1, 2}. We
decompose the matrix Y XY X into (3, 3)-blocks. It turns out that each block is
a bottom-right triangular matrix. We display the blocks Bij, 1 ≤ i, j ≤ 3.

B11 =

 0
0

b1b2µq



B12 =

 0
0 aδb2

b1b2qλ a1b2qδ

 , B21 =

 0
0 a2λ

ab1δ a2qb1µ+ aa1λ



B22 =

 0 ab2
0 aa2 + aa2δ

ab1 a2b1qλ+ aa1 a1a2qδ + ab+ a2δ2



B13 =

 0 b22
ab2 a2b2q

b1b2 a1b1q b2bq
2



B31 =

 0 b1b2
b1a b1a2q

−1 + a1aλ
b21 b1a1q

−1 + a1b1δ ab1λ
2 + b1bq

−2 + a2
1λ+ b1bqµ



B23 =

 0 a2b2
aa2 ab2qλ+ a2

2a
a2b1 a1a2q + a2δ a2bq

2 + aa2qδ



B32 =

 0 a1b2
aa1 b1b2δ + a1a2 + baδ

a1b1 ab1λ+ a2
1 + b1bqλ a2b1λ+ aa1δ

2 + a1b+ a1bqδ



B33 =

 0 bb2
ab a2bq + a1b2qλ

b1b aa1δ + a1bq b1b2qµ+ a1a2qδ + b2q2


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In order to test the four braid relation, we note the following simplifications:
In most places the corresponding matrix entries coincide right away. The other
places appear pairwise: interchange the indices. We display only one member of
each such pair, the one arising from Bij with i ≤ j. Altogether, we obtain 9
conditions:

(1) a2 = b1b2q B12

(2) a1b2qδ = a1b2qµ+ aa2λ B12

(3) aa2(1 + δ) = aa2 + a1b2qλ B22

(4) a1b2q = b2a1q
−1 + a2aλ B13

(5) b2bq
2 = ab2λ

2 + b2bq
−2 + a2

2λ+ b2bqµ B13

(6) a1a2q + a2δ = b1b2δ + a1a2 + δba B23

(7) ab2qλ+ a2
2q = ab2λ+ a2

2 + b2bqλ B23

(8) a2bq
2 + aa2qδ = b2a1λ+ aa2δ

2 + a2b+ a2bqδ B23

(9) a2qb+ a1b2qλ = aa2δ + a2bq B33

We discuss the conditions. (1) is a condition on the diagonal elements of F . We
can multiply F by a scalar without changing the four braid relation; we thus could
normalize to a = 1. (Since F is required to be invertible, we have ab1b2 6= 0.)
Condition (2) can be rewritten as

(3.2) pa1b2 = −aa2.

Therefore a1, a2 are both zero or non-zero. Inspection shows that (3), (4), (8),
and (9) lead to the same condition (3.2). Equation (5) can be rewritten as

(3.3) a2
2 = b2(p+ p−1)(ap−1(p− p−1)− b).

Again (6) and (7) lead to (3.3). It is remarkable that from the potentially 81
conditions only 2 remain.

We normalize a = 1. It is seen that, without essentially restricting the gener-
ality, we can assume F to be symmetric. Then b1 = b2 = p−1. The characteristic
polynomial of F is

(3.4) (t− q−1)(t2 + (1 + q−1 − b)t+ 1).

We formally split the quadratic factor (t+ ρ)(t+ ρ−1). Then

ρ+ ρ−1 − 2 = q−1 − 1− b.

In the case ρ = 1 we have a1a2 = 0 and F satisfies a quadratic equation. If we
write ρ = γ2 and introduce α = (p+ p−1)1/2(γ − γ−1), then F obtaines the form

(3.5) F =

 0 0 p−1

0 −1 p−1/2α
p−1 p−1/2α 1 + q−1 − (ρ+ ρ−1)

 .
The inverse of this matrix F is obtained by reflection in the skew diagonal and
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application of the involution p 7→ p−1, γ 7→ −γ−1. The matrix

Ẽ = F + F−1 + (ρ+ ρ−1)I

is computed to be

(3.6) Ẽ =

 1 + p2 p1/2α p+ p−1

p1/2α (γ − γ−1)2 p−1/2α
p+ p−1 p−1/2α 1 + p−2

 .
It satisfies the relation

(3.7) ẼF = FẼ = q−1Ẽ.

We set E = (ρ+ ρ−1)Ẽ and compute

(3.8) E2 =

(
q + q−1

ρ+ ρ−1
+ 1

)
E.

(Since Ẽ has rank one, the coefficient ν in the equality Ẽ2 = νẼ is computed to
be the scalar product of the first row with itself.) Later we also need to know the
following identity. It is used for the representation theory of tangle categories.

(3.9) E1Y XY = E1.

Since E1 has rank one, there must hold identities of the form E1Y
±1E1 = λ±E1.

The coefficients are determined by applying both sides to a suitable vector, e. g.
(0, 0, 1, 0, 0, 0, 0, 0, 0). The result is as follows:

(3.10) λ± = q±1(ρ+ ρ−1 − 1).

From this, one obtaines finally

(3.11) E1EE1 = (q + 1 + q−1)E1.

(3.12) Remark. The equation (3.9) also determines the matrix Y . Since E1

has many zeros, this simplifies the computation. Also, since E1 has rank one,
it suffices to determine a single row. Since (3.9) is inhomogeneous in Y , the
normalization of Y is determined up to sign, once the other data are fixed. ♥

For tangle theory it is important to decompose E

E: V -ϕ
K -κ

V, V = K3.

We aim at a symmetric decomposition and set (using the standard basis ei)

(3.13)
ϕ: V → K, (e1, e2, e3) 7→ (p1/2

√
p+ p−1, γ − γ−1, p−1/2

√
p+ p−1)

κ: K → V, 1 7→ p1/2
√
p+ p−1e1 + (γ − γ−1)e2 + p−1/2

√
p+ p−1e3.
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These maps satisfyE = κϕ. Moreover, we have

(3.14) Fκ(1) = q−1κ(1).

4. R-matrices of type Bn and Cn

In this section we establish a four braid relation for R-matrices of Coxeter-Dynkin
type Bn and Cn. We begin by specifying the relevant R-matrices. See [28] and
[29] for the use of these matrices in knot and tangle theory.

The matrix Xn = X(Bn) describes an automorphism of V ⊗ V in the lexico-
graphical basis vij, 1 ≤ i, j ≤ 2n + 1 = m. If i + j 6= m + 1, then Xn coincides
with a matrix of A-type, as specified in (2.3). The subspace of V ⊗ V generated
by vij, i + j = m + 1 is invariant under Xn. The corresponding matrix block
will be denoted by Zn. We describe Zn inductively. Again we use δ = q − q−1

and p = q1/2. We let Z0 denote the unit matrix of size 1. The matrix Zn is a
symmetric matrix with central matrix Zn−1, i. e. we adjoin to Zn−1 new rows
and columns in the positions 1 and 2n + 1. The (2n + 1)-row is (q−1, 0, . . . , 0).
The first row is

−δ(q−(2n−1) − 1, q−(2n−3), . . . , q−n, p−(2n−1), q−n+1, . . . , q−1, 1) + (0, . . . , 0, q).

We need information about the eigenspaces of Zn. We set ej = vj,m+1−j. (For
(4.1) and (4.2), we assume that (q + q−1)(q − q−m+1)(q−1 + q−m+1) is invertible
in K. There analogous assumptions in (4.4) and (4.5). See section 6 for these
conditions.)

(4.1) Proposition. The matrix Zn has eigenvalues q,−q−1, q−m+1.
(1) The q-eigenspace has the basis

zj = qej + q−1em+1−j − ej+1 − em+1−(j+1), 1 ≤ j ≤ n− 1

zn = qen−1 − (p+ p−1)en + q−1en+1.

(2) The (−q−1)-eigenspace has the basis

yj = (ej − em+1−j)− (q−1ej+1 − qem+1−(j+1)) 1 ≤ j ≤ n− 1

yn = en−1 + (p− p−1)en − en+1.

(3) An eigenvector for q−m+1 is

(1, q, . . . , qn−1, p2n−1, qn, . . . , q2n−1).

Proof. We prove (1) by induction on n. The case n = 1 is a simple verification.
For the induction step it remains to check:

(1) z1 is an eigenvector of Zn.
(2) The scalar product of the first row of Zn with z2, . . . , zn is zero.
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For (1), we compute the scalar product of z1 with the first row to be

δ(1− q−2n+1)q + δq−2n+2 + δq−1 + q−1q−1 = q2,

and with the second row to be

−δq−2n+2q − δ(1− q−2n+3)− q−1 = q.

These values are correct. The scalar product with rows 3 to m gives trivially the
correct result. For (2), we compute the scalar product with z2 to be

−δq−2n+2q + δq−2n+3 + δp−2 − δq−2 = 0

and similarly for z3, . . . , zn−1. For zn we have

−δq−nq + δ(p+ p−1)p−2n+1 − δq−n+1q−1 = 0.

The verification for the other eigenspaces is similar. 2

Let now Fn denote a (2n + 1, 2n + 1)-matrix as in (2.5) with w = p−1 − p,
a = −p, βj = 1 and set Yn = Fn ⊗ 1.

(4.2) Theorem. The matrices X(Bn) and Yn satisfy the four braid relation.

Proof. As before, we decompose X(Bn) and Yn into suitable blocks. The sub-
space W of V ⊗ V generated by vii, vi,m+1−i, 1 ≤ i ≤ m is invariant under X
and Y . The remaining basis elements generate a subspace where the four braid
relation is satisfied by the results of section 2. We order the basis of W as follows:

v1,m, v2,m−1, . . . , vm,1, v11, . . . , vmm.

We assume that vn,n occurs among the vj,m+1−j. In that case, we are in the
formal situation of (1.6) with Z = Zn and A = Dia(0, . . . , 0,−p, w, . . . , w), D =
Dia(0, . . . , 0, w, . . . , w) with w appearing n times in A and D. Moreover Bt = C
and

B =

 0 J
0 0
J 0

 , J =

 1

1

 ,
i. e. J is the co-unit matrix. In order to check the conditions of (1.7), we use:

(4.3) Proposition. The column vectors of AZB + qBD generate the q-
eigenspace of Z.

Let us assume this for the moment. Then (1.7, II) holds. Since Z,A,D are
symmetric and Bt = C, the condition (1.7, III) follows by transposition. The
matrix BC is the unit matrix, but with the central diagonal element replaced by
zero. In order to verify (1.7, I), one notes the following facts which are simple
consequences of the general structure of the matrix blocks:
qBCZ is qZ with the n-th column replaced by zero;



T. tom Dieck 4. R-matrices of type Bn and Cn 13

qZBC is qZ with the n-th row replaced by zero;
AZAZ is the n-th row of Z, multiplied by q, and the rest replaced by zero;
ZAZA is the n-th column of Z, multiplied by q, and the rest replaced by zero.

(1.7, I) is a direct consequence of these facts. 2

Proof of (4.3). By inspection, one sees that the non-zero columns S1, . . . , Sn

of AZB + qBD are given in terms of the eigenvectors (4.1) as follows: wzj =
Sj − qSj+1 for 1 ≤ j ≤ n− 1 and wzn = Sn. 2

We now consider the R-matrices X(Cn) = X ′
n which act on V ⊗ V with

dimV = 2n = m. Again, the vij for i+j 6= 2n+1 are mapped as for X(Bn). The
subspace of V ⊗V generated by the vij with i+ j = 2n+1 is invariant under X ′

n

and the corresponding matrix block Z ′n is defined inductively, beginning with

Z ′1 =

(
δ(1 + q−2) q−1

q−1 0

)
.

The matrix Z ′n is a symmetric matrix with central matrix Z ′n−1. Its 2n-th row is
(q−1, 0, . . . , 0). The first row is

δ(1 + q−2n, q−2n+1, . . . , q−n−1,−q−n+1, . . . ,−q−1,−1) + (0, . . . , 0, q).

Again we need the eigenspace structure of Z ′n.

(4.4) Proposition. Z ′n has eigenvalues q, −q−1, −q−m−1.
(1) The q-eigenspace has the basis

z′j = qej + q−1em+1−j − ej+1 − em+1−(j+1) 1 ≤ j ≤ n− 1

z′n = qen + q−1en+1.

(2) The (−q−1)-eigenspace has the basis

y′j = (ej − em+1−j)− (q−1ej+1 − qem+1−(j+1)), 1 ≤ j ≤ n− 1.

(3) An eigenvector for the eigenvalue −q−m−1 is

(1, q, . . . , qn−1,−qn+1, . . . ,−q2n).

Proof. The proof is by induction on n as for (4.1). 2

Let now F ′
n be a (2n, 2n)-matrix as in (2.5) with βj = β and set Y ′

n = F ′
n ⊗ 1.

(4.5) Theorem. The matrices X(Cn) and Y ′
n satisfy the four braid relation.

Proof. We use the same method as for Theorem (4.2). We have A = D =
Dia(0, . . . , 0, w, . . . , w) with w appearing n times and B = C = βJ . It is easy
to see that the non-zero columns S ′1, . . . , S

′
n of AZ ′B + qBD have the form

S ′j − q−1S ′j+1 = βwz′j for 1 ≤ j ≤ n − 1 and S ′n = βwz′n. Therefore (1.7, II and
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III) hold. The matrix BC is a multiple of the identity, hence commutes with Z ′.
The matrix Z ′AZ ′A is zero. Therefore (1.7, I) is satisfied too. 2

The inverse of the matrices X(Bn) and X(Cn) is obtained by reflection in the
skew diagonal and replacement of p by p−1. The matrix X = X(Bn) satisfies

0 = (X − q)(X + q−1)(X − q−m+1), m = 2n+ 1

and the matrix X = X(Cn)

0 = (X − q)(X + q−1)(X + q−2n−1).

The matrices E, defined by (q−q−1)(I+E) = X−X−1 are in both cases of rank
one. Their entries are nonzero only in places (ij, kl) with i+ j = k + l = m+ 1.
This essential part of E is symmetric and therefore determined by its first row.
This row is in the case Bn

−(q−2n+1, q−2n+2, . . . , q−n, p−2n+1, q−n+1, . . . , 1)

and in the case Cn

(q−2n, . . . , q−n−1,−q−n+1, . . . ,−1).

The matrices E satisfy the following equations

(4.6)
X(Bn)E(Bn) = E(Bn)X(Bn) = q−2nE(Bn)
X(Cn)E(Cn) = E(Cn)X(Cn) = −q−2n−1E(Cn)
E(Bn)2 = ([2n]q + 1)E(Bn), E(Cn)2 = ([2n+ 1]q − 1)E(Cn).

Here we have used the quantum numbers [h]q = (qh − q−h)/(q− q−1). For tangle
theory and Birman-Wenzl algebras we need relations between E- and Y -matrices.
It turns out that other normalizations of the Y -matrices have better properties.
From now on we use the previously defined matrices multiplied by p−1. In this
case, F−1 is obtained from F by reflection in the skew diagonal and replacement
of p by p−1. It satisfies (F − q−1)(F + 1) = 0.

(4.7) Theorem. The matrices Y just defined satisfy in the cases Bn and Cn

the identity Y XY E = E.

Proof. As in previous proofs we decompose V ⊗ V into invariant subspaces.
On the D8-orbits the matrices E are zero. For the remaining part we use the
notations of (4.2) and (4.5). The identity in question is then equivalent to the
two equations

(AZA+ qBC)E = E, (AZB + qBD)E = 0.

Inspection shows that with our new normalization of Y the matrix AZA+ qBC
is actually the identity, thus the first equation holds. (This seems also a better
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explanation for (1.7, I).) The eigenvalue relation (1.7, II) yields by the very
definition of E the second equation. 2

(4.8) Remark. The decomposition of V ⊗ V into eigenspaces is the decompo-
sition into irreducible representations of the relevant quantum group. Except for
the one-dimensional trivial representation the second symmetric power S2V and
second alternating power Λ2V are relevant. ♥

(4.9) Remark. One can also establish a four braid relation for automorphisms
of the form 1 ⊗ F . This is obtained from the previously considered form by
conjugation with the interchange automorphism τ : V ⊗V → V ⊗V, v⊗w 7→ w⊗v.
This is due to the fact that τ ◦X(q) ◦ τ = X(q−1)−1. ♥

(4.10) Remark. A tedious computation shows that for X(B2) and a bottom-
right triangular matrix F2 the four braid relation holds if and only if the matrix is
the one used in (4.2). In this sense, the case X(B1) seems to be exceptional. I am
grateful to R. Häring [15] for an independent verification of this computation.

5. The example H∞B2

As an example for later investigations we communicate some computations for
the generalized Hecke algebra H∞B2. This is the associative algebra with 1 over
K with generators t, g and relations tgtg = gtgt and g2 = (v−1)g+v with v ∈ K∗.
The following commutation rule is basic for many computations.

(5.1) Theorem. For k ∈ ZZ and l ∈ IN0 the following commutation rule holds:

gtkgtl − tlgtkg = (1− v)
l∑

j=1

(tjgtk+l−j − tk+l−jgtj).

We can write this rule more symmetrically as a commutator rule

[gtkg + (v − 1)
l∑

j=1

tjgtk−j, tl] = 0.

For 0 ≤ k ≤ l the same relation holds for the sum from 0 to k; thus we have an
element that commutes with tl. By multiplication from right and left with t−l one
obtains similar results for l < 0.

Proof. By induction over k and l for k, l ∈ IN. For details see [1]. 2

The commutation rules are used to derive a basis for the algebra (compare
section 8).

(5.2) Theorem. The algebra H∞B2 has the following bases: Either tlgtk,
tlgtkg−1 for k, l ∈ ZZ or tlgtk, tlgtkg for k, l ∈ ZZ. 2

We use these results to determine all traces on the algebra.
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(5.3) Theorem. The traces T on H∞B2 with T (1) = 1 correspond bijectively
to pairs of families (τ(n) | n ∈ ZZ) and (σ(k, l) = σ(l, k) | (k, l) ∈ ZZ2).

Proof. By (5.2), we can define a linear form T on the algebra by

T (1) = 1, T (tkgtl) = τ(k + l), T (tkgtlg) = σ(k, l).

We have to show that any such linear form satisfies T (xy) = T (yx) for all basis
elements x and y. We make a series of deductions.

(1) We have that T (tk+lg) = T (tkgtl) = τ(k + l) depends only on k + l.

(2) We must have T (tkgtl) = T (tlgtk) for any trace T . The commutation rule
(=CR) (7.1) shows that σ(a, b) has to be symmetric in a, b.

(3) T (tugtkgtl) = T (tu+lgtkg).

Proof. We apply the CR to gtkgtl and obtain

tugtkgtl = tutlgtkg + (1− v)
∑
j

(tu+jgtk+l−j − tu+k+l−jgtj).

Because of (1) the sum terms cancel.

(4) T ((tugtv)(tkgtl)) = T ((tkgtl)(tugtv)).

Proof. By (3), the left, right side equals T (tu+lgtv+kg), T (tv+kgtl+ug), respec-
tively, and both are equal to σ(l + u, v + k) by (2).

(5) T (gtagtbg) = (v − 1)σ(a, b)− vτ(a+ b).

Proof. We apply the CR to (gtagtb)g and obtain

gtagtbg = tbgtag2 + (1− v)
b∑

j=1

(tjgta+b−jg − ta+b−jgtjg).

The sum terms cancel, by (2). Now use the quadratic relation for g2.

(6) T (tmgtkgtlg) = T (tlgtmgtkg).

Proof. We apply the CR on both sides to tmgtkg. The resulting sum terms
cancel by (3). Then one uses (5) to show

T (gtkgtm+lg) = T (tlg2tkgtm).

(7) The trace of tagtbgtcg is invariant under permutations of a, b, c.

Proof. The CR is applied in tlgtmgtkg to tmgtkg in order to show that the
trace is invariant under permutation of k, l. The CR is applied to tlgtmg in oder
to show that the trace is invariant under permutation of m, k.

(8) T (tugtvgtkgtl) = T (tkgtlgtugtvg).
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Write gtvgtkg as a linear combination of the basis and use (3) in order to show
that the left hand side of the claim has the trace T (tu+lgtvtkg). Then use (7).

(9) T (tagtbgtcgtdg) = T (tdgtagtbgtcg).

Proof. Write gtbgtcg in terms of the basis and use the invariance properties
already known. 2

The left hand side of (9) is invariant under all permutations of a, b, c, d. Does
a similar invaraince hold for longer products of this form?

The algebra H∞ = H∞B2 is isomorphic to the group algebra of the corre-
sponding infinite Weyl group. The group algebra W∞ of this Weyl group has
generators T,G and relations G2 = 1 and GTGT = TGTG.

(5.4) Theorem. Suppose v + 1 ∈ K∗. The following assigments define inverse
isomorphisms H∞ ∼= W∞:

G 7→ 1

v + 1
(2g + (1− v)), T 7→ 1

v + 1
(1vt+ (v − 1)gt),

g 7→ 1

2
((v + 1)G+ (v − 1)), t 7→ ((1− v)G+ (1− v))T.

Proof. One has to show that the assignments yield well defined maps. The
elements

e1 =
g + 1

v + 1
, e2 =

v − q

v + 1

are orthogonal idempotens with sum 1 in H∞. Therefore

e1 − e2 =
1

v + 1
(2g + (1− v))

satisfies T 2 = 1. The compatibility relations are verified more easily from other
presentations of the algebras involved. We state these presentations but do not
translate the results to the present situation. 2

The algebra H∞ has the presentation (see section 8) H ′∞ with generators
f, g, c, c−1 and relations g2 = (v − 1)g + v, f 2 = (v − 1)f + v, cgc−1 = f ,
cfc−1 = g, cc−1 = c−1c = 1. The correspondence is given by the following table:

H∞ H ′∞

g g
t g−1c
gt c

gtgt−1g−1 f

The algebra W ′∞ has a similar presentation with generators G,F,C,C−1 and
relations above for v = 1.
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(5.5) Theorem. The following assignments define inverse isomorphisms
H ′∞ ∼= W ′∞:

G 7→ 1

v + 1
(2g + 1− v), F 7→ 1

v + 1
(2f + 1− v), C 7→ c

g 7→ 1

2
((v + 1)G+ v − 1), f 7→ 1

2
((v + 1)F + v − 1), c 7→ C.

2

By combining the isomorphisms, one sees that the elements

1

v + 1
(2vt+ (v − 1)gt),

1

v + 1
(2vgtg−1 + (v − 1)gt)

commute in H∞; these elements correspond to CG and GC, respectively.
Suppose v = p2 and set d = p + p−1. Let T∞B2 denote the algebra over

K[D] with generators e, τ, τ−1 and relations ττ−1 = τ−1τ = 1, e2 = de, τ 2e =
e = eτ 2, and eτ±1e = De. This is a kind of Temperley-Lieb algebra. We use the
presentation of H∞B2 with generators g and c, c−1. The assignment ϕ(g) = pe−1
and ϕ(c) = τ yields a homomorphism ϕ: H∞B2 → T∞B2. We also have the
Temperley-Lieb algebra TÃ with generators e, f and relations e2 = de, f 2 = df ,
efe = D2e, fef = D2f . The assignment e 7→ e, f 7→ τeτ−1 yields an embedding
ψ: TÃ→ T∞B2. The algebra TÃ has the automorphism τ which interchanges e
and f . In analogy to (8.23) we have an isomorphism

TÃ⊗ K[τ, τ−1] ∼= T∞B2.

(The tensor product is twisted by τ .) The homomorphism ϕ above is related to
the Kauffman calculus of B2-braids. The algebra T∞B2 has a geometrically de-
fined trace which comes from an interpretation by ZZ-equivariant bridges (section
10). The parameter D counts snakes, in the sense of section 10.

6. Some formulas

Let R be an integral domain. for use in the next section, we collect some formulas
for the algebra A = R[X]/I, where I is the ideal generated by

p = (X − a1)(X − a2) · · · (X − an), aj ∈ R.

We consider the generic case when the aj are pairwise different. We assume that
the aj are units in R. Then we have:

(6.1) Proposition. The element X ∈ A is invertible. 2

We set
E ′

j =
∏

i,i6=j

(X − ai).

From p = 0 we see that the E ′
j are pairwise orthogonal
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(6.2) E ′
jE

′
k = 0 j 6= k

and satisfy

(6.3) XE ′
j = E ′

jX = ajE
′
j.

The E ′-elements are almost idempotent

(6.4) E ′2
j = αjE

′
j,

with

(6.5) αj =
∏

i,i6=j

(aj − ai).

If we assume that

(6.6) ∆ =
∏
i<j

(ai − aj)

is invertible in R, then the elements

(6.7) Ej = α−1
j E ′

j

are pairwise orthogonal idempotents. The sum
∑

iEi is formally a polynomial of
degree n − 1 in R[X] which assumes the value 1 at the aj and is therefore the
constant 1. Hence:

(6.8) Proposition. If ∆ ∈ R∗, then the E1, . . . , En are an R-basis of A and a
decomposition of 1 into orthogonal idempotents. 2

The R-module A is always free of rank n with basis 1, X, . . . , Xn−1. The E ′
j

have with respect to this basis, up to sign, the determinant ∆.

We have

(6.9)
∏

(X−1 − a−1
j ) =

∏
(ajX)−1

∏
(aj −X).

If we define A over R = ZZ[a1, a
−1
1 , . . . , an, a

−1
n ], then the assignment aj 7→ a−1

j ,
X 7→ X−1 defines an involution ι on A. The elements ι(Ej) are therefore also an
orthogonal decomposition of 1 (in A[∆−1]). From the defining equation ι(E ′

j) =∏
i,i6=j(X

−1 − a−1
j ) we see that ι(Ej)Ei = 0 for i 6= j. Therefore we have:

(6.10) ι(Ej) = Ej, ι(E ′
j) = (−1)n−1

∏
i,i6=j

(aj − a−1
j )E ′

j.

What we have done so far just makes explicit the decomposition of A provided
by the Chinese remainder theorem.
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7. Birman-Wenzl algebras

We recall the definition of Birman-Wenzl algebras for simply laced Coxeter
graphs, see [2] and [33].

Given a Coxeter graph (S,m) with values m(s, t) ∈ {1, 2, 3}. We choose pa-
rameters q, x, λ ∈ K and assume K∗. The Birman-Wenzl algebra

BW (S,m) = BW (S,m; q, x, λ)

is the associative algebra with 1 with generators (Gs, G
−1
s , Es | s ∈ S) and the

following relations (m = m(s, t) always):

(1) GsG
−1
s = G−1

s Gs = 1
(2) GsGt = GtGs, m = 2
(3) GsGtGs = GtGsGt, m = 3
(4) Gs −G−1

s = (q − q−1)(Es + 1)
(5) EsEt = EtEs, m = 2
(6) EsEtEs = EtEsEt, m = 3
(7) E2

s = (x− 1)Es

(8) EsG
±1
t Es = λ±1Es, m = 3

(9) GsEs = EsGs = λ−1Es.
(10) GsGtEs = EtGsGt, m = 3
(11) GsGtEs = EtEs, m = 3
(12) EtGsGt = EtEs, m = 3
(13) GsEtGs = G−1

t EsG
−1
t , m = 3

(14) GsEtEs = G−1
t Es, m = 3

(15) EsEtGs = EsG
−1
t , m = 3

For q 6= 1, the parameter x is determined by the identity (q − q−1)x = λ− λ−1.
The original Birman-Wenzl algebra [2] belongs to the graph An−1. There are
corresponding generalized Brauer centralizer algebras; they are the special cases
q = 1, λ = 1. The Brauer centralizer algebras for the graph Bn have a different
definition. They are studied in [27]. If q − q−1 ∈ K∗, then Es can be computed
from Xs; hence we can eliminate these generators. This yields:

(7.1) Proposition. Suppose q − q−1 ∈ K∗. Then the relations (10)-(15) are
consequences of the remaining ones. Another consequence of the relations is (Xs−
λ−1)(Xs + q−1)(Xs − q) = 0. 2

This proposition can be used to redefine the algebra BW (S,m), in the case
that q − q−1 ∈ K∗, by generators (Xs | s ∈ S) and relations (2), (3), (8) and the
cubic relation of the last proposition. Going back and forth uses section 6.

The algebra BW (S,m) has the Hecke algebra H(S,m) as a quotient: Set
Es = 0. The (Es | s ∈ S) generate a subalgebra T (S,m), a Temperley-Lieb
algebra [9].

We now define the restricted BW-algebras of type B and the corresponding
Brauer centralizer algebras (symmetric without free points in the terminology of
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Reich [27]). The algebra BW (Bn) has generators G0, G1, . . . , Gn−1, E1, . . . , En−1.
The relations between the Gj, Ej for 1 ≤ j ≤ n − 1 are as above for the graph
An−1. The additional relations are:

(16) G0G1G0G1 = G1G0G1G0

(17) G0Gi = GiG0, i > 1
(18) G0Ei = EiG0, i > 1
(19) (G0 − q−1)(G0 + 1) = 0
(20) G0G1G0E1 = E1.

Again, there is a version which does not use the Ej.

(7.2) Remark. The algebra BW (Bn) has dimension 2n · (2n− 1)!!.

Proof. This is easily shown for the Brauer algebras, compare [27]. 2

(7.3) Theorem. The irreducible representations of BW (Bn) are indexed by
pairs of Young diagrams of size n− 2k. The Bratteli diagram is given by adding
or omitting a box in the Young diagrams.

The proof of the last theorem will be given in a subsequent paper of the series.
For a further study of these algebras see also [16].

Finally, we define unrestricted BW-algebras BW ∗(Bn) of type Bn. They are
infinite dimensional algebras. In addition to the generators for BW (Bn), there is
another generator E0. The new additional relations are as follows: (23) replaces
(19) above; and

(21) E0Gj = GjE0, j > 1
(22) E2

0 = DE0

(23) G0 −G−1
0 = (Q−Q−1)(E0 + 1)

(24) E1E0E1 = FE1.

Here D, F , and Q are new parameters. Relation (23) is analogous to (4). Occa-
sionally, it is more convenient to use the relation G0 +G−1

0 = (Q+Q−1)(E0− 1).
This latter relation came up in section 3, with E,F in place of E0, G0.

The algebra BW (Bn) has the Hecke algebra H(Bn), with suitable parame-
ters, as a quotient: Again set Es = 0. Similarly for the algebra BW ∗(Bn). The
algebra BW ∗(Bn) contains a Temperley-Lieb algebra of type Bn: The subalgebra
generated by the E0, . . . , En−1 (compare [7, 9]).

The R-matrix identities of section 4 are used to construct tensor representa-
tions of these algebras and quantum traces; and the latter give Kauffman polyno-
mials [23] of type B. The representation of BW (Bn) is on V ⊗n. Here we use the
presentation by generators G0, . . . , Gn−1 alone. The definition is as in (1.5). It is
only necessary to check the additional cubic relation and (20). The definition of
quantum traces is modelled after [29], [28]. We defer the discussion to another
paper, but see [8].
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(7.4) Remark. There are similar definitions for BW-algebras associated to the
affine root systems B̃n and C̃n. Remark (4.9) allows the construction of tensor
representations for these extended algebras. ♥

We describe in detail the example BW (B2) in order to motivate the definition.
Consider the algebra with generators X,X−1, Y, E and relations

(1) XX−1 = X−1X = 1
(2) XYXY = Y XY X
(3) XE = EX = λE
(4) (Y − q−1)(Y + 1) = 0
(5) X −X−1 = (q − q−1)(E + 1)
(6) E2 = dE
(7) Y XY E = E

Here λ and q are invertible parameters in the ground ring K and d ∈ K. They
have to satisfy (d+ 1)(q − q−1) = λ− λ−1, as follows from (3), (5), and (6).

(7.5) Proposition. The following assertions are implied by the relations above:
(1) (X − λ)(X − q)(X + q−1) = 0.
(2) XYXY is contained in the center.
(3) EYXY = E.

(4) EY E = q+λ−1

q+1
E = : aE.

Proof. The first assertion is a consequence of (3) and (5). The second follows
from (2) and (5). For the third, we compute

λY XY = EXYXY = XYXY E = Y XY XE = λY XY E = λE.

For the final identity we compute

EY E = (δ−1(X −X−1)− 1)Y E

= δ−1(XY E −X−1Y E)− Y E

= δ−1(Y −1E −X−1(q−1Y −1 + (q−1 − 1))E)− Y E

= δ−1(Y −1E − q−1Y E − (q−1)λ−1E)− Y E

= δ−1((qY + (q − 1)E − q−1Y E − (q−1 − 1)λ−1E)− Y E

= δ−1((q − 1)− (q−1 − 1)λ−1)E

=
q + λ−1

q + 1
E.

We have used (4), (5), and (7) in the computation. 2

The algebra is generated by

1, X, Y,XY, Y X, Y XY,XY X,XY XY,E,EY, Y E, Y EY.

It is easily checked from the relations that left and right multiplication by X, Y,E
always leads to linear combinations of the displayed elements. If we take the
quotient by the relation E = 0, then we obtain a Hecke algebra of type B2.
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The kernel of the quotient to the Hecke algebra is the twosided ideal spanned
by E, Y E,EY, Y EY . It decomposes into the left ideals spanned by E,EY and
Y E, Y EY . The matrices of X, Y , and E in the basis Y,EY are

X =

(
λ q − 1
0 q

)
, Y =

(
0 q−1

1 q−1 − 1

)
, E =

(
d a
0 0

)
.

One can verify directly that these matrices satisfy the relations of the algebra and
thus define a two-dimensional representation. From the Hecke algebra, we obtain
4 one-dimensional representations and another two-dimensional one. Altogether,
we see that the algebra has dimension 12 and the elements above form a basis.

The corresponding Brauer algebra of symmetric Brauer graphs (without free
points) is obtained by using the relations with λ = 1 and q = 1.

Because of the inhomogeneous nature of the relation Y XY E = E, the algebra
is sensitive to the quadratic relation for Y . If one uses the relation Y − Y −1 =
Q−Q−1, then the algebra is at most 9-dimensional, and 8-dimensional if λ 6= Q±2.

8. Braid groups of type B

The braid group ZBn associated to the Coxeter graph Bn is, by definition, the
group generated by t, g1, . . . , gn−1 with relations

(8.1)

(1) gigjgi = gjgigj, |i− j| = 1
(2) gigj = gjgi, |i− j| ≥ 2
(3) tgi = git, i ≥ 2
(4) tg1tg1 = g1tg1t.

We also need another presentations of this group.
Let Z ′Bn be the group with generators c, g1, . . . , gn−1 and relations

(8.2)

(1) gigjgi = gjgigj, |i− j| = 1
(2) gigj = gjgi, |i− j| ≥ 2
(3) cgi = gi−1c, i ≥ 2
(4) c2g1 = gn−1c

2.

We abbreviate g = gn−1gn−2 · · · g1.

(8.3) Proposition. The assignment ϕ(gi) = gi, 1 ≤ j ≤ n−1, and ϕ(t) = g−1c
defines an isomorphism ϕ: ZBn → Z ′Bn.

Proof. The relations (1) and (2) yield in both groups

(8.4) gi−1g = ggi, i > 1.

We define in ZBn (resp. Z ′Bn) an element c (resp. t) by gt = c. From (1), (2)
and (8.4) we see that the relations cgi = gi−1c and git = tgi are equivalent for
i > 1.

We set h = gn−1 · · · g2, k = gn−2 · · · g1 and infer from (8.4)
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(8.5) gh = kg.

We use this to show that the relations c2g1 = gn−1c
2 and tg1tg1 = g1tg1t are

equivalent, provided (1), (2), and (3) hold. We compute

g−1
n−1c

2g1 = g−1
n−1gn−1kthg1tg1 = khtg1tg1

c2 = gthg1t = ghtg1t = kgtg1t = khg1tg1t

and see the equivalence. 2

The braid group ZÃn−1 of the Coxeter graph with n vertices Ãn−1 has, by
definition, generators g1, . . . , gn and relations

(8.6)
gigjgi = gjgigj, m(i, j) = 3
gigj = gjgi, m(i, j) = 2.

Indices will be considered modn in this case. We have m(i, j) = 3 if and only if
i ≡ j ± 1 modn. All this holds for n ≥ 3. For n = 2, the group is the free group
generated by g1 and g2.

The graph Ãn−1 has an automorphism which permutes the vertices cyclically.
We have an induced automorphism s of ZÃn−1 given by

s(gi) = gi−1, imodn.

The n-th power of s is the identity.

We use s to form the semi-direct product

(8.7) ZÃn−1 → Gn → ZZ;

the generator 1 ∈ ZZ acts through s on ZÃn−1. There is a similar semi-direct
product where ZZ is replaced by ZZ/nk. The semi-direct product is the group
structure on the set ZÃn−1 × ZZ defined by (x,m) · (y, n) = (x · sm(y),m + n).
The group Gn has the following description by generators and relations. Let
G′

n denote the group with generators s, g1, . . . , gn and relations (8.6) for the gj

together with

(8.8) sgi = gi−1s, imodn.

(8.9) Proposition. The assignment ψ(gi) = (gi, 0) and ψ(s) = (e, 1) yields an
isomorphism ψ: G′

n → Gn (neutral element e).

Proof. One verifies that ψ is compatible with relations (8.6) and (8.8). This
is obvious for (8.6). The relation (e, 1)(x, 0)(e, 1)−1 = (s(x), 0) is used to show
compatibility with (8.8).

An element x ∈ ZÃn−1 has an image x′ ∈ G′
n, induced by gi 7→ gi. This

assignment has the property (s(x))′ = sx′s−1. We have the homomorphism Gn →
G′

n, (x,m) 7→ x′sm, by (8.4). It is inverse to ψ. 2
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(8.10) Proposition. The assignment α(gi) = gi, 1 ≤ i ≤ n− 1, and α(c) = s
defines an isomorphism α: Z ′Bn → G′

n.

Proof. The assignment is compatible with the relations of Z ′Bn, since

α(c2g1c
−2) = s2g1s

−2 = sgns
−1 = gn−1.

An inverse to α is induced by the assignment β(gi) = gi, β(gn) = cg1g
−1, and

β(s) = c. In order to see that β is well defined, one has to check, in particular,
the relations

gn−1gngn−1 = gngn−1gn, g1gng1 = gng1gn.

In the first case, this amounts to the equalitiy of

gn−1cg1c
−1gn−1 = c2g1c

−1g1cg1c
−2

and
cg1c

−1gn−1cg1c
−1 = cg1cg1c

−1g1c
−1.

We compute

cg1g2g1c
−1 = cg2g1g2c

−1 = cg2c
−1cg1c

−1cg2c
−1 = g1cg1c

−1g1

and hence
c(g1cg1c

−1g1)c
−1 = c2g1g2g1c

−2.

On the other hand, g1c
−1g1cg1 = g1g2g1. This yields the desired equality.

The second relation above leads to the same situation. 2

If we combine the foregoing, we obtain a semi-direct product

(8.11) ZÃn−1 → ZBn → ZZ.

In terms of the original generators, the inclusion ZÃn−1 ⊂ ZBn is given by

(8.12) gn 7→ gtg1t
−1g−1; gi 7→ gi, 1 ≤ i ≤ n− 1.

The homomorphism ZBn → ZZ in (8.11) is given by gi 7→ 0 and t 7→ 1.
Different types of Weyl groups (= Coxeter groups) are related to these braid

groups. We have the Coxeter groups WÃn−1 and WBn associated to the graphs
Ãn−1 and Bn. In addition, we will also use a group W∞Bn. It is obtained from
ZBn by adding the relations g2

j = 1, but no relation for t. The reason for intro-
ducing this group is a semi-direct product in analogy to (8.11). The arguments
which lead to (8.11) also give a semi-direct product

WÃn−1 → W∞Bn → ZZ.

We give another interpretation and describe these groups as groups of permuta-
tions.

Let tn: ZZ → ZZ, x 7→ x+n be the translation by n. Let Pn denote the group of
tn-equivariant permutations σ: ZZ → ZZ. Equivariance means σ(i+n) = σ(i) +n.
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Hence σ induces σ: ZZ/n → ZZ/n, and σ 7→ σ is a homomorphism π: Pn → Sn

onto the symmetric group Sn.

(8.13) Proposition. The kernel of π is isomorphic to ZZn. The group Pn is
isomorphic to the semi-direct product ZZn → P ′

n → Sn in which Sn acts on ZZn by
permutations.

Proof. Let σ1 ∈ Pn. Then there exists a permutation α of {1, . . . , n} and an n-
tuple (k1, . . . , kn) ∈ ZZn such that σ(i+tn) = α(i)+(ki+t)n. We denote this map
by σ1 = σ(α; k1, . . . , kn). Suppose σ2 = σ(β; l1, . . . , ln) is another permutation
written in this form. Then

σ2 ◦ σ1 = σ(βα; lα(1) + k1, . . . , lα(n) + kn).

If we think of P ′
n = Sn × ZZn as sets, then the desired isomorphism is given by

(α; k1, . . . , kn) 7→ σ(α; k1, . . . , kn). 2

The semi-direct product P ′
n has a normal subgroup Q′

n which is given as a
semi-direct product

(8.14) N → Q′
n → Sn

with N = {(x1, . . . , xn) | ∑xi = 0} ⊂ ZZn. The homomorphism

ε: P ′
n → ZZ, (α; k1, . . . , kn) 7→

∑
ki

is a surjection with kernel Q′
n. The canonical sequence

(8.15) Q′
n → P ′

n → ZZ

is itself a semi-direct product; the assignment 1 7→ (id; 1, 0, . . . , 0) gives a splitting
of ε. Under the isomorphism (8.13) the subgroup Q′

n corresponds to the subgroup

Qn = {σ ∈ Pn | 1 + 2 + · · ·+ n = σ(1) + · · ·+ σ(n)}.

(8.16) Proposition. The groups W∞Bn and Pn are isomorphic. The groups
WÃn−1 and Qn are isomorphic. The element gi is mapped to the transposition
(i, i + 1), i ∈ nZZ. The element t is mapped to σ(i) = i + n for i ≡ 1 modn and
σ(j) = j otherwise.

The proof is given after the proof of (8.21). In the proof of (8.16) we use the
following:

(8.17) Lemma. The elements

t0 = t, t1 = g1tg1, . . . , tn−1 = gn−1 . . . g2g1tg1g2 . . . gn−1

of the braid group ZBn pairwise commute.

Proof. We set
g(i, j) = gigi+1 . . . gj, i ≤ j
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g(i, j) = gigi−1 . . . gj, i ≥ j.

The braid relations imply immediately

g(1, j)gj+1g(j, 1) = g(j + 1, 2)g1g(2, j + 1)

and (8.5) yields

g(2, j + 1)g(1, j + 1) = g(1, j + 1)g(1, j).

By commutation of gj-elements, it suffices to show titi+1 = ti+1ti. We compute

tjtj+1 = g(j, 1)tg(1, j)gj+1g(j, 1)tg(1, j + 1)

= g(j, 1)tg(j + 1, 2)g1g(2, j + 1)tg(1, j + 1)

= g(j, 1)g(j + 1, 2)tg1tg(2, j + 1)g(1, j + 1)

= g(j, 1)g(j + 1, 2)[tg1tg1]g(2, j + 1)g(1, j).

A similar computation works for tj+1tj. 2

The semi-direct product relation (8.13), (8.16) between W∞Bn and WAn−1

has a counterpart for the braid groups. The homomorphism

λ: ZBn → ZAn−1, gj 7→ gj, t 7→ 1

splits by gj 7→ gj. Therefore we have a semi-direct product

(8.18) Kn → ZBn → ZAn−1.

The elements

y0 = t, , y1 = g1tg
−1
1 , . . . , yn−1 = gn−1 . . . g1tg

−1
1 . . . g−1

n−1

are contained in the kernel Kn of λ.

(8.19) Lemma. The elements yj have the following conjugation properties with
respect to ZAn−1:

(1) g−1
k yjgk = yj, k > j, k < j − 1

(2) g−1
k ykgk = yk−1,

(3) g−1
k yk−1gk = yk−1yky

−1
k−1.

Proof. (2) follows directly from the definitions.

(1) If k > j, then gk commutes with every generator in the definition of yj. In
the case k < j − 1 one uses the commutation relation between generators and
gk+1gkg

−1
k+1 = g−1

k gk+1gk (and the inverse) to cancel g−1
k and gk.

(3) is proved by induction on k. The verification for k = 0 is easy. We calculate
with (1) and (2)

g−1
k ykyk+1y

−1
k gk = yk−1yk+1y

−1
k−1 = gk+1yk−1yky

−1
k−1g

−1
k+1.
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On the other hand, by (1) and (2)

g−1
k+1g

−1
k g−1

k+1ykgk+1gkgk+1 = g−1
k g−1

k+1g
−1
k ykgkgk+1gk

= g−1
k g−1

k+1yk−1gk+1gk

= g−1
k yk−1gk.

This yields the induction step. 2

(8.20) Proposition. The group Kn is the free group generated by y0, . . . , yn−1.

Proof. By the previous Lemma, the group K0
n generated by the y0, . . . , yn−1 is

invariant under conjugation by elements of ZAn−1. Since t ∈ K0
n and t together

with ZAn−1 generates ZBn, we must have equality K0
n = Kn.

Let Fn denote the free group generated by y0, . . . , yn−1. We define homomor-
phisms γ1, . . . , γn−1: Fn → Fn by imitating (8.20):

(1) γk(yj) = yj, k > j, k < j − 1
(2) γk(yk) = yk−1,
(3) γk(yk−1) = yk−1yky

−1
k−1.

We claim:

(8.21) Lemma. The γj are automorphisms and satisfy the braid relations

γiγjγi = γjγiγj, |i− j| = 1, and γiγj = γjγi, |i− j| ≥ 2.

Proof. First we check that the homomorphism δk: Fn → Fn

(1) δk(yj) = yj, k > j, k < j − 1
(2) δk(yk−1) = yk,
(3) δk(yk) = y−1

k yk−1yk

is inverse to γk. Hence γk is an isomorphism. Since γk fixes yj for j /∈ {k− 1, k},
the second braid relation is obviously satisfied. For the first relation, the reader
may check the following values of γ1γ2γ1 and γ2γ1γ2 on y0, y1, y2:

y0 7→ y0y1y2y
−1
1 y−1

0 , y1 7→ y0y1y
−1
1 , y2 7→ y0.

We use this Lemma to define a semi-direct product

(8.22) Fn → Γn → ZAn−1,

in which gj ∈ ZAn−1 acts on Fn through δj. By (8.19) and K0
n = Kn, we have a

canonical epimorphism µ: Γn → ZBn. We show that µ is an isomorphism. As a
set, Γn = Fn × ZAn−1. An inverse to µ has to send gj 7→ (1, gj) and t 7→ (y0, 1).
We have to check that this assignment is compatible with the relations of ZBn.
This is obvious for the gj. Moreover:

tg1tg1 7→ (y0, 1)(1, g1)(y0, 1)(1, g1)

= (y0, g1)(y0, g1)

= (y0δ1(y0), g
2
1)

= (y0y1, g
2
1)
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g1tg1t 7→ (1, g1)(y0, 1)(1, g1)(y0, 1)

= (y1, g1)(y1, g1)

= (y1δ(y1), g
2
1)

= (y0y1, g
2
1).

This finishes the proof of Proposition (8.20). 2

Proof of (8.16). The elements tj of (8.17) and the elements yj coincide in W∞Bn,
since gj = g−1

j in this group. Lemma (8.19) shows that conjugation y 7→ g−1
k ygk

acts on the set (y0, . . . , yn−1) by interchanging yk−1 and yk. The proof of (8.20)
is now easily adapted to show the isomorphism W∞Bn

∼= P ′
n. This isomorphism

restricts to an isomorphism WÃn−1
∼= Q′

n. 2

We now apply the previous results to Hecke algebras. We have the Hecke alge-
bras HAn−1, HÃn−1, and HBn associated to the corresponding Coxeter graphs.
We consider algebras over the ground ring K. The first one is given by genera-
tors g1, . . . , gn−1, the braid relations between them and the quadratic relations
g2

j = (q − 1)gj + q with a parameter q ∈ K. The second one has generators
g1, . . . , gn, the braid relations (8.6) and the same quadratic relations. The alge-
bra HBn has generators t, g1, . . . , gn−1, the braid relations (8.1), the quadratic
relations above for the gj and t2 = (Q− 1)t+Q with another parameter Q ∈ K.
If we omit the quadratic relation for t, then we obtain the definition of H∞Bn.
This is not a Hecke algebra in the formal sense, i. e. associated to a Coxeter
graph. It is a deformation of the group algebra of W∞Bn.

We know from Hecke algebra theory that an additive basis of the Hecke algebra
is in bijective correspondence with the elements of the Coxeter group. There is
a similar relation between W∞Bn and H∞Bn. In order to derive it, we relate
HÃn−1 and H∞Bn.

The algebra HÃn−1 has an automorphism τ given by τ(gi) = gi−1 (indices
modn). We define the twisted tensor product over the ground ring K

(8.23) HÃn−1 ⊗ K[τ, τ−1] =: H∞
n

by the multiplication rule (x ⊗ τ k) · (y ⊗ τ l) = (x · τ k(y), τ k+l) for k, l ∈ ZZ and
x, y ∈ HÃn−1.

(8.24) Proposition. The algebra (8.23) is canonically isomorphic to H∞Bn.

Proof. We use the isomorphism (8.3) to redefine the algebra H∞Bn by gener-
ators c, g1, . . . , gn−1 relations (8.2) and the quadratic relations for the gj. The as-
signment gj 7→ gj⊗1, c 7→ 1⊗τ induces a homomorphismH∞Bn → HÃn−1⊗H∞

n .
We have a homomorphism HÃn−1 → H∞Bn, x 7→ x′ induced by gj 7→ gj

with gn = gtg1t
−1g−1 in H∞Bn (see (8.12)). This extends to a homomorphism

H∞
n → H∞Bn by x ⊗ τ k 7→ x′ · ck, since τ(y)′ = cy′c−1. These homomorphisms

are inverse to each other. 2

(8.25) Corollary. Suppose (bj | j ∈ J) is a K-basis of HÃn−1. Then (b′jc
k | j ∈

J, k ∈ ZZ) is a K-basis of H∞Bn. 2
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9. Braids of type B

We use a theorem of Brieskorn [4] to derive some geometric interpretations of
the braid group ZBn. The starting point is the reflection representation of the
Weyl group WBn. This group is a semi-direct product

(9.1) (ZZ/2)n → WBn → Sn.

It acts on complex n-space Cn as follows:
(1) Sn acts by permuting the coordinates.
(2) (ZZ/2)n act by sign changes (z1, . . . , zn) 7→ (ε1z1, . . . , εnzn), εi ∈ {±1}.

This group contains the reflections in the hyperplanes

zi = ±zj, i 6= j; and zj = 0.

Let X denote the complement of these hyperplanes. From the theory of finite
reflection groups it is known, that W = WBn acts freely on X. Brieskorn [4]
shows:

(9.2) Theorem. The braid group ZBn is isomorphic to the fundamental group
π1(X/W ) of the orbit space X/W . 2

If we think of WBn as the Coxeter group with generators t, g1, . . . , gn−1, then
gj acts as the transposition (j, j + 1) and t as z1 7→ −z1.

We use (9.2) to give several interpretations of ZBn by braids.
We remove the hyperplanes zj = 0 from Cn. It remains the n-fold product

C∗× · · · ×C∗ = C∗n. Removal of the remaining reflection hyperplanes yields the
space X of n-tuples (zj) ∈ C∗n with pairwise different squares z2

j .
The configuration space Cn(C∗) is the space of subsets of C∗ with cardinality

n. As topological space it is defined as Y/Sn where Y ⊂ C∗n is the set of n-tuples
(yj) with pairwise different components.

(9.3) Proposition. X/W is homeomorphic to Cn(C∗).

Proof. We arrive at X/W in two steps: First we form Y ′ = X/(ZZ/2)n and
then we divide out the Sn-action. The map (zj) 7→ (z2

j ) yields an Sn-equivariant
homeomorphism Y ′ → Y . 2

By (9.2) and (9.3), ZBn
∼= π1(C

n(C∗)). The elements of π1(C
n(C∗)) will be

interpreted as braids in the cylinder (cylindrical braids). We take (1, ω, · · · , ωn−1),
ω = exp(2πi/n), as base point in Cn(C∗). A loop in Cn(C∗) lifts to a path

w: I → Y, t 7→ (w1(t), . . . , wn(t))

with this initial point. Thus we have
(1) w(0) = (1, ω, . . . , ωn−1).
(2) w(1) = (σ(1), . . . , σ(ωn−1)), with a permutation σ of the set ZZ/n =

{1, ω, . . . , ωn−1}.
(3) For j 6= k we have wj(t) 6= wk(t).
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These data yield a braid zw with n strings in C∗× [0, 1] from ZZ/n×0 to ZZ/n×1

zw(t) = {w1(t), . . . , wn(t)} × t.

Homotopy classes of loops correspond to isotopy classes of such braids. Mul-
tiplication of loops corresponds to concatenation of braids, as usual. Thus we
have:

(9.4) Theorem. The braid group ZBn is the group of n-string braids in the
cylinder C∗ × [0, 1]. 2

A second interpretation is by symmetric braids in C× [0, 1]. This was already
used in [7]. We take the base point (1, 2, . . . , n) ∈ X. We lift a loop in X/W to
a path

w: I → X, t 7→ (w1(t), . . . , wn(t)).

Then we have:
(1) w(0) = (1, 2, . . . , n).
(2) w(1) = (±σ(1), . . . ,±σ(n)) with a permutation σ of {1, . . . , n}.
(3) For j 6= k we have wj(t) 6= ±wk(t).
(4) wj(t) 6= 0.

Let [±n] = {−n, . . . ,−1, 1, . . . , n}. The data yield a braid with 2n strings in
C× [0, 1] from [±n]× 0 to [±n]× 1, namely

t 7→ {−wn(t), . . . ,−w1(t), w1(t), . . . , wn(t)} × t.

These braids are ZZ/2-equivariant with respect to (z, t) 7→ (−z, t) and are there-
fore called symmetric. The theorem of Brieskorn thus gives:

(9.5) Theorem. The group ZBn is isomorphic to the group of symmetric braids
with 2n strings. 2

Symmmetric braids are drawn as ordinary braids but with additional symme-
try with respect to the axis 0× [0, 1].

The symmetry is not the reflection in the axis, but corresponds to a spacial
rotation about this axis. The relation tg1tg1 = g1tg1t appears in this context as
a generalized Reidemeister move.

Braids in the cylinder with n strings can be visualized as ordinary braids with
n + 1 strings — the axis of the cylinder is the additional string. This method
has been used by Lambropoulou [24]. It allows the reduction of Bn-type braids
to ordinary Artin braids, also with respect to proofs. The theorem of Brieskorn
is then not used.

The twofold covering, ramified along the axis, of the cylinder produces a sym-
metric braid from a cylindrical one — and vice versa.

The cylinder C∗× [0, 1] has the universal covering C× [0, 1]. Lifting cylindrical
braids with n strings produces n-periodic infinite braids in C× [0, 1] from ZZ× 0
to ZZ × 1. They are invariant with respect to the translation (z, t) 7→ (z + n, t).
This gives yet another interpretation of ZBn by n-periodic braid pictures.
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The relation between ZBn and ZÃn−1 has the following geometric origin or
counterpart. The map

C∗n → C∗, (z1, . . . , zn) 7→ z1 · . . . · zn

is Sn-equivariant and induces therefore a map from the configuration space

α: Cn(C∗) → C∗.

(9.6) Lemma. The map α is a fibre bundle.

Proof. Let

H = {(z1, . . . , zn) ∈ C∗n |
∏
zj = 1}.

This is an Sn-invariant subset. The map

γ: C∗ ×ZZ/n H → C∗n, (z, z1, . . . , zn) 7→ (zz1, . . . , zzn)

is an Sn-equivariant homeomorphism. Thus γ is the fibre bundle with fibre H
assoziated to the ZZ/n-principal bundle C∗ → C∗, z 7→ zn. In C∗n we have to
remove the subset

C = {(z1, . . . , zn) | there exists i 6= j such that zi = zj}.

Let D = H ∩ C. Then γ induces an Sn-equivariant homeomorphism

γ: C∗ ×ZZ/n (H \D) → C∗n \ S.

This yields the fibre bundle description

C∗ ×ZZ/n (H \ T )/Sn → C∗

for the configuration space. 2

We apply the fundamental group to this fibration and obtain the exact se-
quence

1 → kernelα∗ → ZBn → ZZ → 0.

It can be shown that this is the sequence (8.11), i. e. ZÃn−1 is the fundamental
group of the fibre of α.

Our next aim is to describe an additive basis of the Hecke algebra H∞Bn by
geometric means, i. e. by specifying a certain canonical set of basic braids.

A cylindrical braid with n strings is called descending, if for i < j the i-th
string is always overcrossing the j-th string. The i-th string is the one starting
at ωi, 0 ≤ i ≤ n − 1. Overcrossing means the following: We look radially and
orthogonally from infinity onto the axis. The braid is in general position if we
only see transverse double points. The first string we meet, coming from infinity,
is the overcrossing one.
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(9.7) Theorem. The descending braids form a K-basis of the algebra H∞Bn.
The descending braids with winding number zero form a K-basis of the algebra
HÃn−1.

We use (8.11) to reduce the first statement to the second. For the latter Hecke
algebra we have the canonical basis related to the elements of reduced form in
the Weyl group, and elements of the Weyl group will be shown to correspond
to descending braids. We use the description of the Weyl group elements as n-
periodic permutations of ZZ. We represent such a permutation by n straight lines
c1, . . . , cn in the strip IR × [0, 1] starting at {1, . . . , n} × 0 such that ci and cj
have at most one crossing, and then repeat with period n. By slightly moving the
endpoints of the cj we can assume that the curves are in general position. The
resulting crossings are used to write the permutation as a product of reflections.
This product is reduced, in the sense of Coxeter group theory. It is geometrically
obvious that the same configuration of crossings can be realized by a descending
braid.

(9.8) Proposition. The set

C = {yk
n−1gn−1gn−2 . . . gj | k ∈ ZZ, 1 ≤ j ≤ n}

is a system of representatives for the left cosets of the inclusion W∞Bn−1 ⊂
W∞Bn.

Proof. This is an immediate consequence of the semi-direct product descrip-
tion. The powers of yn−1 are representatives for cosets of Vn−1 ⊂ Vn, and the
products gn−1 . . . gj are representatives for the cosets of Sn−1 ⊂ Sn. 2

We use this Proposition to derive the following result of Lambropoulou and
Przytycki which was proved by them in a purely algebraic manner.

(9.9) Theorem. Let B be the canonical basis of H∞Bn−1. Then {bc | b ∈
B, c ∈ C} is a basis of H∞Bn.

Proof. Represent a basis element of H∞Bn by a descending braid. 2

10. Categories of bridges

This section introduces some general terminology for certain graphical categories
and algebras.

A free involution σ: P → P of a set P is calles a P -bridge. A free involution
of P is a partition of P into 2-element subsets {i, σ(i)}, called the arcs or strings
of the bridge. A bridge is called oriented if its arcs are ordered sets {a1, a2}.

We study bridges with a geometric terminology. Suppose σ: P → P is a bridge.
The geometric realization |σ| of σ is the one-dimensional simplicial complex with
P as set of 0-simplices and a 1-simplex for each arc {i, σ(i)} with i and σ(i) as
boundary points. We say that the arc connects its boundary points. The arcs are
the components of |σ|.
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A (P,Q)-bridge is a bridge on the disjoint union P
∐
Q. An arc of a (P,Q)-

bridge σ is called horizontal if its boundary points are either contained in P or
in Q. The other arcs are called vertical.

We use a graphical notation for (P,Q)-bridges σ. We think of P ⊂ IR × 0,
Q ⊂ IR×1 and we draw an arc in IR×[0, 1] from i to σ(i). The notation horizontal
and vertical is evident in this context. The horizontal arcs with endpoints in P
are called the lower part of the bridge, the horizontal arcs with endpoints in Q
the upper part.

(10.1) Remark. Suppose P has 2n elements. The number of P -bridges is

(2n− 1) · (2n− 3) · · · 3 · 1.

Proof. There are 2n − 1 possibilities to connect a fixed element of P . Having
fixed this connection, a set with 2n− 2 elements remains. Now use induction.2

We will use bridges with further properties.
Let G be a group and suppose P and Q are G-sets. A G-equivariant (P,Q)-

bridge is a G-equivariant free involution σ of P qQ. Equivariant means: σ(gi) =
gσ(i) for g ∈ G and i ∈ P qQ.

Suppose the bridge σ: P → P is G-equivariant. We have an induced G-action
on |σ|. The action on the 0-simplices is given. If {i, σ(i)} is a 1-simplex, then,
by equivariance, {gi, gσ(i)} is a 1-simplex. It can happen that these simplices
coincide. This is the case if g is in the isotropy group Gi of i. If g ∈ G acts
non-trivially on {i, σ(i)}, then

gi = σ(i), gσ(i) = i, g2i = i

and hence g2 ∈ Gi. Geometrically, g acts as reflection in the barycentre of the
1-simplex {i, σ(i)} in this case.

In the sequel we only consider G-sets P with the following additional proper-
ties:

(1) The isotropy groups are finite.
(2) The orbit set is finite.
(3) G acts effectively on each orbit.

Under these hypotheses we have:

(10.2) Proposition. Let σ be a G-equivariant (P,Q)-bridge. Then the follow-
ing holds:

(1) The G-action respects lower, upper and horizontal arcs.
(2) The G-action on |σ| is proper.
(3) The orbit space |σ|/G is a compact one-dimensional CW-complex.

Proof. (1) is clear from the definitions.

(2) The G-action on the barycentric subdivision |σ|′ of |σ| is a cellular action
with finite isotropy groups.



T. tom Dieck 10. Categories of bridges 35

(3) This follows since G acts cellularly on |σ|′ and the orbit space has a finite
number of cells.

Suppose σ is a G-equivariant (P,Q)-bridge and τ a G-equivariant (Q,R)-
bridge. Consider the G-space |τ | ∪Q |σ|. The components of this space can be of
different type. Consider the G-orbit B = Gx of a component x. Let H denote
the isotropy group of the component x. Then B/G is homeomorphic to x/H.
The orbit space of |τ | ∪ |σ is compact. Hence x/H is compact. We use:

(10.3) Lemma. There is no proper action of a discrete group on [0, 1[ with
compact orbit space. 2

This Lemma tells us that the components of |τ | ∪ |σ| are not homeomorphic
to [0, 1[. Since the components are one-dimensional manifolds (with or without
boundary), there are three cases:

(10.4) A componente of |τ | ∪ |σ| is homeomorphic to [0, 1], S1, or ]0, 1[. 2

(10.5) Proposition. The components of |τ | ∪ |σ| which are homeomorphic to
[0, 1] define a G-equivariant (P,R)-bridge.

Proof. If the component is homeomorphic to [0, 1], then the boundary points
are contained in P

∐
R.

For each point in P
∐
R there exists a component of |τ | ∪ |σ| with this point

as boundary point. Since components of type [0, 1[ do not exist, the component
has a second boundary point in P

∐
R. 2

We denote the bridge in (10.5) by τ ∧σ. The components of |τ |∪ |σ| which are
homeomorphic to S1 are called cycles, the components which are homeomorphic
to ]0, 1[ are called snakes.

(10.6) Remark. Let H = Gx be the subgroup of elements which map the com-
ponent x into itself. Then H acts effectively and properly on the one-dimensional
manifold x. Therefore we have, up to H-homeomorphism, the following possibil-
ities:

(1) Suppose x ∼= S1. Then H ∼= ZZ/m or H ∼= D2m,m ≥ 1, and the action is
by the usual action of a subgroup of O(2).

(2) Suppose x ∼= IR. Then H ∼= ZZ or H ∼= D∞, and the action is by the usual
action as a subgroup of the group of affine transformations. ♥

Let Z(τ, σ) denote the orbit set of the components of |τ |∪ |σ| which are cycles
or snakes. The G-orbits of components in Z(τ, σ) are counted according to types.
The type of a component x consists of the conjugacy class of Gx together with
the Gx-homeomorphism type of the Gx-action. The group ZZ/2 has two different
actions on S1, by rotation or by reflection. (In the latter case it is the groupD2.) It
is an observation of H. Reich [27] that these two actions should be distinguished.

Let C denote the set of possible types. We denote by k(c, τ, σ) the number of
elements in Z(τ, σ) of type c.
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After these preparations we define the category F (G) of G-bridges. The objects
of F (G) are the G-sets as above, i. e. with finite isotropy groups, finite orbit set
and effictive action on orbits.

We fix a ground ring K. The morphism set Mor(P,Q) is the free K-module on
the set of G-equivariant (P,Q)-bridges.

In order to define the composition of morphisms we fix a map d: C → K,
called the parameter function. The composition of morphisms Mor(Q,R) ×
Mor(P,Q) → Mor(P,R) is assumed to be K-bilinear. The composition of bridges
is defined to be

τ ◦ σ
∏
c∈C

d(c)k(c,τ,στ ∧ σ.

The identity P → P is represented by the bridge ι: P q P → P q P which
connects i ∈ P vertically with i ∈ P . We have |σ| ∪ |ι| ∼= |σ| and |ι| ∪ |σ| ∼= |σ|,
if defined.

Associativity of composition follows from a geometrical consideration: The
cycles and snakes of |τ | ∪ |σ| ∪ |ρ| are those of |τ | ∪ |σ|, plus those of |σ| ∪ |ρ|,
plus those of |τ ∧ σ| ∪ |ρ| (equal to those of |τ | ∪ |σ ∧ ρ|).

We shall mostly work with suitable subcategories of F (G). For instance, we
could use only free G-sets. Or we restrict the morphisms; this will be the case in
the Temperley-Lieb categories.

The composition of bridges with only vertical strings is again a bridge of this
form. No cycles or snakes appear. The vertical (P, P )-bridges under composition
can be identified with the group of G-equivariant permutations of P .
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