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Abstract

We use Euler groups to construct induction categories for Lie groups
and suitable families of closed subgroups. Euler groups are universal ad-
ditive invariants. Induction categories combine ordinary morphisms and
transfer morphisms and are the source categories for Mackey functors.

1 Additive Invariants

We define the basic object of our theory. The definition is by a universal property
of a type considered in algebraic K-theory. Let G be a locally compact Hausdorff
group. Subgroups are assumed to be closed. We use the general concepts and
notations of the theory of transformation groups [2].

(1.1) Definition. Let C be a category of G-spaces and G-maps. An additive
invariant (A, a) for C-spaces Z over X consists of an abelian group A and an
assignment a[f ] ∈ A to each G-map f :Z → X, Z ∈ C such that the following
holds:

(1) (Homotopy invariance) Suppose fi:Zi → X are C-spaces overX (i = 0, 1).
Let σ:Z0 → Z1 be a G-homotopy equivalence such that f1σ 'G f0 ('G

means G-homotopic). Then a[f0] = a[f1].
(2) (Additivity) Let

Z0

j
��

// Z1

��
Z2

// Z
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be a pushout in C and j a closed G-cofibration. Let f :Z → X be a G-map
and denote by fi:Zi → X the compositions of f with the maps in the
diagram. Then a[f ] + a[f0] = a[f1] + a[f2].

(3) (Normalization) a[∅ → X] = 0. (Assume ∅ ∈ C.)
An additive invariant (A, a) is called universal , if every other additive invariant
(B, b) is obtained from (A, a) by composing with a unique homomorphism A→
B. 3

The existence of a universal additive invariant is shown by a Grothendieck
construction. Let C be a category of G-spaces and G-maps. Suppose there exists
a set O(C) of objects in C such that any object in C is G-homotopy equivalent
to an object in O(C). Let X be any G-space. Let F (C;X) be the free abelian
group on the set of G-homotopy classes [f ]:Z → X of G-maps f with Z ∈ O(C).
Suppose g:Y → X is a G-map from an object in C and h:Z → Y a G-equivalence
to an object in O(C). Then g represents the element [gh] in F (C;X). Let R(C;X)
be the subgroup generated by elements of the following form:

(1) [f1]−[f2], if there exists a G-homotopy equivalence h such that f1h 'G f2;
(2) [f ]− [f1]− [f2] + [f0], if the maps are related by a pushout diagram in C

of the type (2) in 1.1;
(3) [∅ → X].

Let U(C;X) = F (C;X)/R(C;X) and let u[f :Z → X] denote the element repre-
sented by f in U(C;X). Then (U, u) is a universal additive invariant for G-spaces
in C over X.

If C is the category of G-spaces which are G-equivalent to finite G-complexes,
then we write U(C;X) = U(G;X). If F is a family of closed subgroups of G and C
the category ofG-spaces which areG-homotopy-equivalent to finite F -complexes,
then we write U(C;X) = U(G,F ;X). If X is a point, we set U(G,F ;X) =
U(G,F). A computation of the universal groups uses the Euler characteristic as
an essential tool. Therefore we call groups of the type U(G,F ;X) Euler groups .

(1.2) Remarks.
1. Consider the diagrams

A
u //

v
��

B

V
��

A× Z
u×id //

V×id
��

B × Z

V×id
��

A/G
u/G //

v/G
��

B/G

V/G
��

C
U

// D C × Z
U×id

// D × Z C/G
U/G

// D/G.

Suppose the first one is a pushout in TOP. Suppose A, B, and C are G-spaces and u,
v are G-maps. Then there exists a unique G-action on D such that the diagram is a
pushout in G-TOP. If Z is a locally compact G-space, then the second diagram is a
pushout in G-TOP. Moreover the third diagram is a pushout in TOP.
2. Let S be a locally compact (K, G)-space. If we apply S×G to the first pushout
diagram in the previous exercise, then we obtain a pushout in K-Top.
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3. Let i:A → B be a closed G-cofibration. Then the product with a locally compact
G-space S is again a closed G-cofibration. If S is a locally compact (K, G)-space, then
S ×G A→ S ×G B is a closed K-cofibration. 3

2 Formal Properties

In this section we collect formal properties of the universal groups.

(2.1) Proposition. A G-map f :X → Y induces a homomorphism
f∗:U(G,F ;X)→ U(G,F ;Y ), [h] 7→ [fh].

Proof. The assignment in question is certainly additive and compatible with
homotopy equivalences. Hence f∗ is well-defined by the universal property. 2

Let F be a family of subgroups of H. If H is a closed subgroup of G, we define
FG as the family of subgroups of G which are conjugate to an element of F . If
the H-space Y is an F -space, then the G-space G×H Y is an FG-space.

(2.2) Proposition. The assignment

[f :Z → X] 7→ [G×H f :G×H Z → G×H X]

induces an isomorphism iGH :U(H,F ;X)→ U(G,FG;G×H X).

Proof. We first show that the assignment induces a well-defined homomorphism.
This is a consequence of the universal property and the following facts:

(1) If Z is a finite F -complex, then G×H Z is a finite FG-complex.
(2) If we apply the induction construction G ×H - to an H-pushout of the

type 1.1, then we obtain a G-pushout.
(3) An H-cofibration is mapped into a G-cofibration, an H-equivalence into

a G-equivalence.
An inverse to iGH is constructed as follows. Suppose a G-map f :Z → G×H X of
a finite G-complex Z is given. Compose with the projection p:G×H X → G/H.
Then Z becomes a G-space over G/H by h = pf . Let Z0 = h−1(eH). The
assignment Z 7→ Z0 is an inverse, up to equivariant homeomorphism, to Z0 7→
G ×H Z0; it maps finite G-complexes to finite H-complexes and is compatible
with equivariant pushouts and cofibrations. 2

Let ϕ:H → G be a homomorphism between compact Lie groups. If F is a
G-family, then

ϕ∗F = {ϕ−1(C) | C ∈ F}

is an H-family. An F -space yields via ϕ an ϕ∗F -space ϕ∗Y . If Y is a finite
G-complex, then ϕ∗Y is not right away a finite H-complex, but certainly H-
homotopy equivalent to such a complex (or even H-homeomorphic). It can be
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shown that a pushout of G-spaces yields under ϕ∗ a pushout of H-spaces and
that ϕ∗ maps G-cofibrations to H-cofibrations. These properties, together with
the universal properties of the Euler groups, yield:

(2.3) Proposition. The assignment [f :Z → X] 7→ [ϕ∗f :ϕ∗Z → ϕ∗X] yields
a homomorphism ϕ∗:U(G,F ;X)→ U(H,ϕ∗F ;ϕ∗X). This construction is func-
torial (ϕψ)∗ = ψ∗ϕ∗. 2

The special case of the previous proposition in which ϕ is an inclusion of a
subgroup is called restriction to this subgroup.

Suppose F i is a Gi-family (i = 1, 2). We have the G1 ×G2-family

F1 ×F2 = {H1 ×H2 | Hi ∈ F i}.

(2.4) Proposition. The assignment ([f1], [f2]) 7→ [f1 × f2] induces a bilinear
map U(G1,F1;X1)× U(G2,F2;X2)→ U(G1 ×G2,F1 ×F2;X1 ×X2).

Proof. Fix a G2-map f2:Y → X2 from a finite G2-complex Y into X2. We show
that [f1] 7→ [f1 × f2] induces a homomorphism

U(G1,F1;X1)→ U(G1 ×G2,F1 ×F2;X1 ×X2).

This is a consequence of the fact that the product with Y preserves equivari-
ant pushouts and homotopy equivalences. The fact that pushouts are preserved
follows from an adjunction of the type

TopG1×G2
(Z × Y, P ) ∼= TopG1

(Z,TopG2
(Y, P ))

where the mapping space TopG carries the compact-open topology. We now use
in a similar manner the universal property of U(G2,F2;X2) to show that the
construction so far induces a homomorphism of U(G2,F2;X2) into

Hom(U(G1,F1;X1), U(G1 ×G2,F1 ×F2;X1 ×X2)).

This homomorphism yields, by adjunction, the desired bilinear map. 2

(2.5) Proposition. Let H and K be compact Lie groups and S a finite (H,K)-
complex, i.e., S carries commuting left H- and right K-actions. The assignment

[f :Z → X] 7→ [S ×K f :S ×K Z → S ×K X]

induces a homomorphism iKH(S):U(H;X)→ U(K;S ×K X). 2

Let H �G. If Z is a finite G-complex, then Z/H can be considered as a finite
G/H-complex. If x ∈ Z has isotropy group K, then Hx ∈ Z/H has isotropy
KH/H. The G-family F induces the G/H-family F/H = {KH/H | K ∈ F}.
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(2.6) Proposition. Let H �G. The assignment

[f :Z → X] 7→ [f/H:Z/H → X/H]

induces a homomorphism U(G,F ;X)→ U(G/H,F/H;X/H). 2

If d:G → G × G is the diagonal and if F1,F2 are G-families, the relation
d∗(F1×F2) = F1 ◦F2 holds. Thus, cartesian product of representatives induces
by 2.3 and 2.4 an internal product

U(G,F1;X)× U(G,F2;X)→ U(G,F1 ◦ F2;X).

If F1 = F2 = F is multiplicative, we obtain on U(G,F ;X) the structure of a
Z-algebra. In particular, if X is a point, we obtain the Euler ring U(G,F) for a
multiplicative family, and the module U(G;X) over this ring, if G is F -modular.

(2.7) Proposition. Let p:E → B be a G-fibration such that the fibre is a finite
complex. Then pullback of representatives X → B along p induces a homomor-
phism p∗:U(G;B)→ U(G;E).

Proof. 2

The groups U(G;X) are additive in X, i.e., it follows immediately from the
definitions that we have a canonical isomorphism

U(G;X + Y ) ∼= U(G;X)⊕ U(G;Y )

which is induced by the inclusions of the summands.

3 Euler Groups

The component category π0(G;X) of the G space X has objects the G-
homotopy classes [x]:G/H → X. A morphism from [x]:G/H → X to [y]:G/K →
X is a G-map σ:G/H → G/K such that yσ 'G x. An object α:G/H → X of
π0(G,X) can be identified with the path-component XH

α of α(eH) in π0(X
H).

Thus the object set of π0(G;X) is the disjoint union of the sets π0(X
H) for

H ≤ G.
The automorphism group Aut(α) of α = [x] consists of those σ:G/H → G/H

such that xσ 'G x. We have σ ∈ NH/H = WH by identifying σ with σ(eH) =
nH, n ∈ NH. We have the canonical action of WH on XH and π0(X

H); and
WαH, the isotropy group of α ∈ π0(X

H) under this action, is isomorphic to
Aut(α).

Given f :Z → X and α:G/H → X, we let

Z(f, α) = ZH ∩ f−1(XH
α ).
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Here XH
α ⊂ XH is the path-component of α(eH). The action of WH on ZH

restricts to an action of WαH on Z(f, α). In other terms: the space Z(f, α) is an
Aut(α)-space.

We denote by χ(A) the Euler characteristic of a space A. Until further notice
we use the homological definition χ(A,B) =

∑∞
i=0(−1)irankHi(A,B; Z) with

integral homology. Finite G-complexes Z and their orbit-spaces have such an
Euler characteristic.

Finite F -complexes fi:Zi → X over X are called Euler equivalent if and
only if for each α:G/H → X with H ∈ F the Euler characteristics of the orbit
spaces χ(Z(fi, α)/Aut(α)) coincide (i = 1, 2).

Let Eu(G,F ;X) denote the set of equivalence classes under this equivalence
relation. Let [f ] denote the element in Eu represented by f . We define an asso-
ciative and commutative composition law on Eu(G,F ;X) by disjoint union

[f1:Z1 → X] + [f2:Z2 → X] = [f1 + f2:Z1 + Z2 → X].

This composition law is the structure of an abelian group. We therefore call such
groups Euler groups . The neutral element is given by [∅ → X]. The existence
of inverses is seen as follows. Let A be a finite complex with trivial G-action and
Euler characteristic χ(A) = −1. Then one verifies that f ◦prZ :Z ×A→ Z → X
represents an inverse of [f :Z → X].

By definition, each α defines a homomorphism

χα:Eu(G,F ;X)→ Z, [f :Z → X] 7→ χ(Z(f, α)/Aut(α)).

If α ranges over the isomorphism classes of objects in π0(G,F ;X), we obtain an
injective homomorphism

eu:Eu(G,F ;X)→
∏

α Z, α ∈ Iso π0(G,F ;X).

(3.1) Lemma. The pair (Eu(G,F ;X), eu) is an additive invariant for finite
F-complexes over X.

Proof. Given subcomplexes Z0 ⊂ Zj with Z = Z1 ∪ Z2 and a G-map. Then we
have induced inclusions

ιj:Z0(α, f)/Aut(α) ⊂ Zj(α, f)/Aut(α)

with union Z(α, f)/Aut(α). We can view the inclusions ιj as inclusions of finite
complexes. The fundamental additivity property χ(A∪B)+χ(A∩B) = χ(A)+
χ(B) of the Euler characteristic together with its homotopy invariance yields that
[f :Z → X] 7→ χα[f ] is an additive invariant. This is equivalent to the claim. 2

(3.2) Theorem. The group U(G,F ;X) is the free abelian group with basis [α]
for α ∈ Iso π0(G,F ;X).
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Proof. We verify that the [α], α ∈ Iso π0(G,F ;X) are linearly independent. For
each α we denote a representative by α:G/Hα → X. Suppose x =

∑
nα[α] = 0 is

a linear relation in U(G,F ;X) with nα ∈ Z. Let K = Hγ be a maximal subgroup
such that nγ 6= 0. Consider

χγ(β:G/Hβ → X) = χ(G/HK
β ∩ β−1(XK

γ )/Aut(γ)).

If this is non-zero, then G/HK
β 6= ∅ and hence K = Hγ subconjugate to Hβ. By

maximality of Hγ, only the summands [nβ][β] with Hγ ∼ Hβ can contribute to
χγ(x). In this case, the relation

gHβ ∈ G/HK
β ∩ β−1(XK

γ )

is equivalent to

g−1Hγg = Hβ, and β(gHβ) ' γ(eHγ) in XK .

Therefore the morphism σ ∈ Hom(G/Hγ, G/Hβ) with σ(eHγ) = gHβ is an
isomorphism from γ to β in π0(G,F ;X). Thus

χγ(x) = nγχ(G/HK
γ ∩ γ−1(XK

γ )/Aut(γ)) = nγ = 0.

We now verify that the elements [α] in question generate U(G,F ;X). This is a
formal consequence of the axioms 1.1. Let f :Z → X be a G-map from a finite G-
complex Z. We use induction on the number of cells and on the dimension of Z to
show that the corresponding element in the Euler group is a linear combination
of the [α]. Let Z = W ∪ (G/H ×Dn) be obtained from W by attaching an n-cell
G/H × Dn of type H. If we restrict f to an orbit in the interior of this n-cell,
then we obtain a well-defined element [α]. Let Y = G/H ×Dn(1

2
) be the closed

cell in G/H×Dn of radius 1
2

about the center. If we remove the interior Y ◦ of Y
from Z, then the resulting space is G-homotopy equivalent to W . By additivity,

[Z, f ] = [Z r Y ◦, f ] + [Y, f ]− [(Z r Y ◦) ∩ Y, f ]

= [X, f ] + [α]− [G/H × Sn−1, f ].

Here Sn−1 denotes the boundary of Dn(1
2
). We show by induction that

[G/H × Sn−1] = (1 + (−1)n−1)[α], n ≥ 0.

The induction starts with n = 0 and (1.1.3). For the induction step, let D+ (D−)
be the upper (lower) hemisphere of Sn, respectively. Then

[G/H × Sn, f ] = [G/H ×D+, f ] + [G/H ×D−, f ]− [G/H × Sn−1, f ]

= 2[α]− [G/H × Sn−1, f ]

and induction works. 2
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The previous proof shows that the expansion of [f :Z → X] in terms of a
basis can be obtained by counting cells. If G/H × En ⊂ Z is an open n-cell of
Z, then the restriction of f to an orbit of G/H ×En defines a basis element [α].
We therefore call this cell an n-cell of type α.

(3.3) Corollary. Let n(α, i) be the number of i-cells of type α in f :Z → X
and set n(α) =

∑
i(−1)in(α, i). Then [f :Z → X] =

∑
α n(α)[α]. 2

(3.4) Proposition. By universality and lemma 3.1, we obtain a homomor-
phism ι:U(G,F ;X)→ Eu(G,F ;X). It is an isomorphism.

Proof. The proof of 3.2) shows that the basis elements [α] remain linearly inde-
pendent in Eu(G,F ;X). By construction, ι is surjective. 2

Given f :Z → X and β ∈ Iso π0(G;X), we denote by Z(β) theG-subspace of Z
consisting of the orbits C such that f |C:C → X defines β. The latter means the
following. Choose a G-isomorphism σ:G/H → C. Then fσ:G/H → X defines
an object of π0(G;X), and the isomorphism class is independent of the choice of
σ.

Define a partial order on Isoπ0(G;X) by α ≤ β if and only if there is a
morphism in π0(G;X) from a representative of α to a representative of β. We
write α < β if α ≤ β and α 6= β. Given f :Z → X and α, we let

Zα =
⋃

α≤β

Z(β), Z>α =
⋃

α<β

Z(β).

These are G-subspaces of Z. With this notation, we can express the com-
binatorial Euler characteristic 3.3 as a relative Euler characteristic n(α) =
χ(Zα/G,Z>α/G). Since Zα r Z>α = Z(α), we write χc(Z(α)/G) =
χ(Zα/G,Z>α/G). The left hand side can be interpreted as a cohomological Euler
characteristic of the space Z(α)/G defined by cohomology with compact support.
With these notations, we have the following relation in U(G;X)

[f :Z → X] =
∑

α χc(Z(α)/G)[α].

If we are willing to admit redundancy, we can write (??) in a form which does not
depend on X. Two orbits in Z(L) certainly define the same element in U(G;X),
if they belong to the same path component of Z(L)/G. We could therefore split
Z(α)/G into path-components. Thus, if the index β enumerates the basis ele-
ments which are represented by orbits in G-path-components of orbit bundles of
Z, then

[f :Z → X] =
∑

β χc(Z(β)/G)[β].

It suffices to collect the path components of Z(L)/G which map to the same com-
ponent of Z(L)/G. This is due to the fact that a homotopy of an orbit corresponds
to a path in a fixed point set.
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(3.5) Remarks.
1. The groups U(G;X) are invariants of the G-homotopy type of X. Let f0, f1:X → Y
be G-homotopic. Then the induced maps (fj)∗:U(G;X)→ U(G;Y ) are equal.

By functoriality, it suffices to show that the projection pr:X × [0, 1] → X induces
an isomorphism pr∗. This is a consequence of the computation, since pr∗ induces a
bijection between the canonical bases.

One can also give a proof via formal properties.
2. Euler groups can be defined, whenever the Euler characteristic makes sense. A
class of spaces which can be used in this context are the finitely dominated spaces.
An F-space Z is called finitely dominated if there exists a finite F-complex E and
G-maps i:Z → E, p:E → Z such that pi 'G id(Z). In this case we call (i, p) a finite

domination of Z. In a finite domination, the integral homology groups of ZH are
direct summands of those of EH and therefore finitely generated abelian groups. Hence
χ(ZH) exists. Moreover, if Z and E are G-spaces over X, then χ(Z(f, α)/ Aut(α))
exists. 3

4 Burnside Groups

Let fi:Zi → X be finite G-complexes over X. They are called Burnside equiv-
alent if for all α:G/H → X the Euler characteristics χ(Z(fi, α)) are equal. We
denote by A(G;X) the set of equivalence classes. As in the case of U(G;X),
disjoint union of equivalence classes induces a structure of an abelian group on
A(G;X). Let A[f ] ∈ A(G;X) denote the class of f :Z → X. We call groups of
this type Burnside groups . From the definition it follows immediately that A
is an additive invariant for finite G-complexes. Therefore we obtain a canonical
surjection a:U(G;X) → A(G;X) which is the identity on representatives. We
have similar groups for families of isotropy groups.

Composition withG-maps h:X → Y induces a homomorphism h∗:A(G;X)→
A(G;Y ). Suppose f :Z → X is given. Then Z(hf, β) = (hf)−1(Yβ) ∩ ZH is a
disjoint union of a finite number of Z(f, α) over the α which are mapped to β
by h. Hence h∗ is compatible with Burnside equivalence.

The next theorem shows the difference between the Euler and the Burnside
groups.

(4.1) Theorem. The group A(G,F ;X) is the free abelian group on the set of
isomorphism classes of objects α:G/H → X in π0(G;X) with H ∈ F and finite
Weyl group WH. 2

If F is multiplicative, then A(G,F) is a Z-algebra. It has a unit element, if
G ∈ F . If F is the family of all closed subgroups, then A(G) = A(G,F) is the
Burnside ring of the compact Lie group G.
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5 Induction Categories

We construct a Z-category Ω(G) for each compact Lie group G. The objects of
Ω(G) are the homogeneous spaces. The morphism sets are defined as

MorΩ(G)(G/H,G/K) = U(G;G/H ×G/K).

We give two descriptions for the composition of morphisms. The composition of
morphisms in the diagram is bilinear and we use it to define the composition
(f, g) 7→ g ◦ f of morphisms in Ω(G). We explain the diagram below.

U(G;G/H1 ×G/H2)× U(G;G/H2 ×G/H3)

(1)
��

U(H2; resH2 G/H1)× U(H2; resH2 G/H3)

(2)
��

U(H2; resH2(G/H1 ×G/H3))

(3)
��

U(G;G/H2 × (G/H1 ×G/H3))

(4)
��

U(G;G/H1 ×G/H3)

Explanation. For each G-space X we have a canonical G-homeomorphism G×H

X → G/H×X, (g, x) 7→ (g, gx). We apply this in the first line G/H1×G/H2
∼=

G ×H2 (resH2 G/H1) and use then the isomorphism ??. Similarly for the second
factor. The morphism (2) is the bilinear map ??. The morphism (3) is again
an application of ?? and the canonical G-homeomorphism above. Finally, (4) is
induced by the projection onto the factors ??.

We now describe the composition of morphisms on the level of representing
objects. Let

(α, β1):A→ G/H1 ×G/H2, (β2, γ):B → G/H2 ×G/H3

be given. Set A(0) = β−1
1 (eH2) and B(0) = β−1

2 (eH2). These are H2-subspaces
of A and B, and we have canonical G-homeomorphisms A ∼= G ×H2 A(0), B ∼=
G×H2 B(0). Let

α(0):A(0)→ resH2 G/H1, γ(0):B(0)→ resH2 G/H3

be the restrictions of α, γ. The image of ((α, β1), (β2, γ)) under (1) is represented
by (α(0), γ(0)), and by α(0)×γ(0) if we apply (2). If we apply theG×H2-extension
process to the pullback

A(0)×B(0)
pr //

pr
��

B(0)

��
A(0) // P,

10



with P a point, we obtain the pullback

C = G×H2 (A(0)×B(0))
γ̄ //

ᾱ
��

G×H2 B(0) ∼= B

β2��
A ∼= G×H2 A(0)

β1 // G/H2.

Thus, if we apply the G×H2-extension to α(0) × γ(0) and project away the
G/H2-factor, we obtain (αᾱ, γγ̄) as a representative of the composition of the
morphisms represented by ??. We display the composition of ?? in the diagram

C
γ̄ //

ᾱ
��

B
γ //

β2��

G/H3

A
β1 //

α
��

G/H2

G/H1

in which the rectangle is a pullback. From this pullback description of the com-
position and the transitivity of pullbacks we see that composition is associative.
The diagonal G/H → G/H ×G/H represents the identity of G/H in Ω(G).

We know that U(G;G/H × G/K) is a free abelian group. We now specify

a basis. For this purpose we consider diagrams β|α):G/H
α←− G/L

β−→ G/K.
Two such diagrams with G/H and G/K fixed are called equivalent if there exists
a G-isomorphism σ:G/L→ G/L′ making the diagram

G/H

id
��

G/Loo //

σ
��

G/K

id
��

G/H G/L′oo // G/K

commutative up to G-homotopy.

(5.1) Proposition. Equivalence classes of diagrams G/H ← G/L → G/K
represent a Z-basis of U(G;G/H ×G/K).

Proof. A diagram G/H
α←− G/L

β−→ G/K is just a map (α, β):G/L→ G/H ×
G/K and represents an element of U(G;G/H × G/K). Equivalent diagrams
represent the same element. A reformulation of (3.4) shows that the equivalence
classes form a basis. 2

We verify the axioms of an induction category for π0 Or(G),Ω(G), see []. The
first one is clear and the second one follows from the definition of morphisms and
proposition (??). The interchange map τ :G/H×G/K → G/K×G/H induces a
bijection U(G;G/H×G/K) ∼= U(G;G/K×G/H). If we interprete this in terms
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of morphisms of Ω(G), we obtain a contravariant functor D: Ω(G)→ Ω(G) with
D ◦D = id. We call this functor the self duality of Ω(G).

The composition of some of the basis elements is easy to describe. We have
the following relations.

(α| id) ◦ (β|γ) = (αβ|γ)
(β|γ) ◦ (id |δ) = (β|δγ)

This follows immediately from the pullback description of the composition. This
yields axiom (3). The fourth axiom follows from the fact that in a relation (id |α)◦
(β| id) =

∑
s ns(αs|βs) the αs and βs are obtained by the restriction of ᾱ and β̄

in (??) to orbits of C.
We call the relation (id |α)◦(β| id) =

∑
s ns(αs|βs) the double coset decom-

position in the category Ω(G). We make this explicit for the present situation.
Express the identity of G/H × G/K as an element of U(G;G/H × G/K) in
terms of the standard basis id =

∑
α nα[α]. This decomposition belongs to a

decomposition G/H ×G/K =
∐

α Z(α) into G-subspaces; each Z(α) is a subset
of an orbit bundle Z(L) of G/H × G/K for an isotropy subgroup L. Moreover
nα = χc(Z(α)/G). Thus we have to use a decomposition of the double coset space
H\G/K ∼= (G/H × G/K)/G =

∐
α Z(α)/G. With these notations we have the

double coset formula

(G/H → G/G| idG/H) ◦ (idG/K |G/K → G/G) =
∑

α nα[α]

for the composition of morphisms in Ω(G).
We remark that, by the discussion after ??, we can take for the Z(α) the

orbits which fill a path component of Z(L). This may be slightly redundant in
the sense that some basis element can appear several times, since only the path
components in Z(L)/G matter.

6 Functorial Properties of Induction Categories

Let L ≤ G. There is an induction functor

iGL : Ω(L)→ Ω(G).

It maps the object L/A to the object G/A = G ×L A and the morphism
(u, v):L/A → L/B × L/B to (G ×L u,G ×L v). The pullback description of
the composition is used to check the functor property. Induction is transitive
iML ◦ iLK = iMK .

A morphism in Ω(G) of the type G/L → G/H × G/K with L ≤ H,K is in
the image of this functor. Other basic morphisms are obtained from this one by
composing with the conjugation of subgroups.

12



We can define iGL also by universal constructions. We have a G-map

G×L (X × Y )→ (G×L X)× (G×L Y ), (g, x, y) 7→ (g, x, g, y).

This yields

Ω(L;X × Y )→ Ω(G;G×L (X × Y )→ Ω(G; (G×L X)× (G×L Y )),

and from this one defines iGL .
Suppose p:G→ K is a surjective homomorphism. This induces a functor

pG
K : Ω(K)→ Ω(G).

It maps the object K/L to G/p−1L, i.e., we view K/L via p as a G-space. We
can apply the same device to a basic morphism

K/L1 ← K/L0 → K/L2

and obtain the morphism

G/p−1L1 ← G/p−1L0 → G/p−1L2.

If we work with representatives of U(K;K/L1×K/L2), then we can view the same
representative via p as an element of U(G; p−1G/L1×G/p−1L2). This process is
additive and compatible with pullbacks and thus defines a homomorphism

MorΩ(K)(K/L1, K/L2)→ MorΩ(G)(G/p
−1L1, G/p

−1L2)

which is compatible with composition and identities. Thus we have a functor.
This construction is transitive, i.e., pL

Mp
M
N = pL

N . We can combine the construc-
tions iGL and pG

L . For this purpose we use a category LIE. The objects are the
compact Lie groups. A morphism from H to K is an isomorphism class of dia-
grams

(p|i):H i←− L
p−→ K

with an injection i and a surjection p. Another diagram

(p′|i′):H iI←− L
p′−→ K

is called isomorphic to the first one if there exists an isomorphism σ:L → L′

such that i′σ = i and p′σ = p.
In order to define the composition in LIE we consider the diagram

H

L
p //

i

OO

K

Q
p′ //

j′
OO

M
q //

j

OO

N

13



with a pullback square. We define (j, q) ◦ (i, p) = (ij′, qp′).
We define a contravariant functor from LIE into the category Z-CAT of Z-

categories. On object level we set L 7→ Ω(L). We map the morphismH
i← L

p→ K
to the functor iHL p

L
K . We have to verify that this is a functor. This amounts to

the verification of the relation pL
Kj

K
M = (j′)L

Q(p′)Q
M in the notation of the diagram

above.

(6.1) Remark. We describe the category Ω(G) for an abelian group G. By the
general theory of the previous section it mainly remains to compute the composition
of morphisms (G/M ← G/H) ◦ (G/L → G/H) which appear in the double coset
decomposition. We have

(G/M ← G/H) ◦ (G/L→ G/H) = χ(H/LM)[G/L← G/(L ∩M)→ G/M ].

There is a similar formula for the product in the Euler ring U(G):

[G/H]× [G/K] = χ(G/LM)[G/(L ∩M).

Thus, if G = S1 is the circle group, then all products of basis elements [G/H], H 6= G

are zero. But for a higher dimensional torus there exist non-zero products if LM = G;
and if L 6= G, then [G/L]2 = 0. 3

7 Categories with Families

We consider multiplicative families F2 ⊂ F1 and define a category Ω(G,F1,F2).
Suppose first that F2 is empty. Then Ω(G,F1) is the subcategory of Ω(G) with
the same morphisms and with U(G,F1;G/H ×G/K) as morphism group from
G/H to G/K. Since F is assumed to be multiplicative, this is compatible with
composition. We have a natural inclusion of categories µ: Ω(G,F2)→ Ω(G,F1)
and the image is an ideal. Thus we can form the quotient category Ω(G,F1,F2),
on morphism sets the cokernel of µ. Since morphisms Mor(G/H,G/K) only use
basis elements G/L → G/H × G/K, we only need the family F = {L | (L) ≤
(H), (L) ≤ (K)}, i.e.,

MorΩ(G)(G/H,G/K) = MorΩ(G,F)(G/H,G/K).

We call the families (H)-adjacent if F1 r F2 = (H).

(7.1) Proposition. If F1 ⊃ F2 are (H)-adjacent, then

EndΩ(G,F1,F2)(G/H) ∼= Z(π0WH).

Proof. 2

14



(7.2) Corollary. We always have a split surjection of rings

EndΩ(G) → Z(π0WH).

Proof. 2

Let F be a multiplicative family and G an F -modular family. We show that
the induction categories under consideration carry an enriched structure.

(7.3) Theorem. The morphism sets of Ω(G,F ,G) carry a natural structure of
an U(G,F)-module. Composition is bilinear with respect to this modules struc-
ture. In this way Ω(G,F ,G) becomes an Ω(G,F)-category.

Proof. We interprete U(G,F) = U(G,F ;P ) with a point P . Then the module
structure

U(G,F)× U(G,F ,G;G/H ×G/K)→ U(G,F ,G;G/H ×G/K)

is defined as a special case of (??). More generally, we have this module structure
on U(G,F ,G;X). It is given by [Y ] · [f :Z → X] = [pr ◦f :Y × Z → X]. One
verifies bilinearity. 2

8 Ideals in Ω

In practice, there occur natural quotients of the categories Ω(G). We describe
one such quotient.

Let Or∞(G) denote the subcategory of Or(G) which consists of morphisms
f :G/H → G/K such that Aut(f) is infinite.

(8.1) Lemma. If Aut(f) is finite then any composition of f in Or(G) has the
same property.

Proof. This is obvious for a composition of the form hf . Up to automorphism,
we can assume that f is induced by an inclusion H ⊂ K. In that case Aut(f) ∼=
WKH. If H ⊂ L ⊂ K and WKH is finite, then also WKL, since K/LH consists of
a finite number of WKH orbits and carries a free WKL-action. From this fact it
follows that also a composition of the form fh has infinite automorphism group.

2

We define ω(G;G/H × G/K) as the quotient of Ω(G;G/H × G/K) by the
subgroup spanned by (α|β) with Aut(β) infinite. It is seen as for the lemma
that these subgroups of the morphism groups from an ideal in Ω(G). Hence we
can define the quotient category ω(G) of Ω(G) by this ideal. We call ω(G) the
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stable induction category for G. The reason is that this category is isomorphic
to the category of homogeneous spaces and stable G-homotopy classes of maps.
We return to this point later.

The endomorphism ring in ω(G) of G/G is the Burnside ring of G. The U(G)-
module structure on the morphism sets of Ω(G) passes to an A(G)-module struc-
ture on the morphism sets of ω(G).

9 Coherent Systems of Mackey Functors

We relate Mackey functors for different groups. If they are related in a reasonable
way, they are called coherent systems.

In the previous section we have constructed a contravariant functor from LIE
to Z-CAT which is given on object by H 7→ Ω(H). Suppose we are given a family
(MG: Ω(G)→ R-Mod) of Mackey functors. A coherence for this family associates
to each morphism σ:H → K in LIE a natural transformation hσ:MH →MK ◦σ∗
such that the following holds:

(1) hτσ = hστ
∗ ◦ hτ ;

(2) If σ = i:H → K is an injection, then hi is a natural isomorphism.
A family (MG) together with a coherence (hσ) is called a coherent family of
Mackey functors. We call it strongly coherent if we have the additional
property

(3) Let i be an inner automorphism. Then hi is the identity.
We display in form of a diagram, what condition (1) of a coherence says. For this
purpose let the next diagram describe a composition of morphisms in LIE.

A

B
p //

i

OO

C

Z

J

OO

P // D

OO

q // E

Then the following diagram is commutative.

ME(E/E0)

hq

��

hτ

**TTTTTTTTTTTTTTT

MD(D/q−1E0)
hj //

hP

��

MC(C/jq−1E0)

hp

��

hσ

**TTTTTTTTTTTTTTTT

MZ(Z/p−1q−1E0)
hJ // MB(B/p−1jq−1E0)

hi // MA(A/ip−1jq−1E0)

Moreover, in this diagram

hτσ = hσhτ , hqP = hPhq, hiJ = hihJ .
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10 Global Categories

We construct in this section a source category Ω for global Mackey functors.
The objects of Ω are the compact Lie groups. The morphism set MorΩ(G,H) =
Ω(G,H) is defined again as a suitable universal additive invariant.

We consider (H,G)-principal bundles over finite H-complexes [?]. These are
right G-principal bundles p:X → Z with a left action on H on X and Z such
that p is H-equivariant and the actions of H and G on X commute; in other
words: H acts as a group of automorphisms of the G-principal bundle p:X → Z.

An additive invariant for the category of these (H,G)-bundles is defined in
the usual way. It consists of an abelian group U(H,G) and an element u[p:X →
Z] for each bundle p:X → Z such that the following holds:

(1) If the commutative diagram

X ′ Φ //

p′
��

X
p

��
Z ′

ϕ // Z

is a bundle map and ϕ an H-homotopy equivalence, then u[p′] = u[p].
(2) If we have H-subcomplexes Z1 ⊃ Z0 ⊂ Z2 and Z = Z1∪Z2, and p:X → Z

is an (H,G)-bundle with restrictions pi to Zi, then

u[p] + u[p0] = u[p1] + u[p2].

(3) u[p: ∅ → ∅] = 0.

We denote by Ω(H,G) the value group of the universal such invariant.
We also use another view point for (H,G)-bundles: Spaces X with left H-

action, right free G-action; the actions commute; and X is a finite (H,G)-
complex.

We postulate MorΩ(H,G) = Ω(H,G). The category Ω is a Z-category. The
composition is defined on representatives

Ω(H,K)× Ω(G,H)→ Ω(G,K), (Y,X) 7→ X ×H Y

with right K-action coming from Y and left G-action coming from X. Since
this construction is compatible with equivariant homotopy equivalences and is
additive in both variables, it induces, by the universal property, a well defined
bilinear map. The construction is obviously associative. The identity of Ω(G,G)
is represented by the (G,G)-space G with left and right G-action by group mul-
tiplication.

We can, of course, define in the same manner a category by working with left
principal bundles with right automorphism group.

An (H,G)-bundle over a homogeneous space G/K is called a local (H,G)-
bundle. Local (H,G)-bundles have the following form:
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Let K ≤ H and ρ:K → G a homomorphism. Let H ×(K,ρ) G denote the
quotient of H×G by the relation (hk, ρ(k−1)g) ∼ (h, g) for k ∈ K, with induced
left H- and right G-action by group multiplication.

We consider some special cases of local objects and the corresponding mor-
phisms in Ω.

Let σ:H → K and τ :K → G be homomorphisms. The composition of mor-
phisms represented by the corresponding local bundles is given by

(H ×(H,σ) K)×K (K ×(K,τ) G) ∼= H ×(H,τσ) G.

We therefore have a covariant functor from the category of compact Lie groups
to Ω which is the identity on objects and maps τ to K ×(K,τ) G.

Let now i:K → H be an injection and consider H ×(iK,i−1) K as a morphism
from K to H in Ω. In this way we obtain a contravariant functor from the
category of injections of compact Lie groups to Ω.

The two functors above are not injections. Conjugate homomorphisms or in-
jections yield the same local object, hence the same morphism in Ω.

Consider now H
i← K

ρ→ G with an inclusion i:K ⊂ H. We have

(H ×K K)×(K,ρ) G ∼= H ×(K,ρ) G.

Hence a general morphism is a composition of the above two special types of
morphisms.

The computation of the morphism set is a special case of an Euler group
computation. We consider (H,G)-bundles as left H×G◦-spaces (G◦ the opposite
group of G) with free G◦-action. Thus we use the family

F = {K ≤ H ×G◦ | K ∩ (1×G◦) = 1}.

Then
Ω(H,G) = U(H ×G◦,F).

Therefore we obtain from the general theory, in particular:

(10.1) Proposition. Ω(H,G) is the free abelian group on the isomorphism
classes of local (H,G)-bundles. 2

The local objects which appear in a (K,H)-bundle Y are determined as fol-
lows. Fix y ∈ Y . let K0 ≤ K be the group of elements k ∈ K such that there
exists h ∈ H with ky = yh. Define ρ(k) = h. Then ρ is a homomorphism K0 → H
which defines the local object through y.

We now describe the local objects which appear in X×H Y for (H,K)-bundles
Y and (K,G)-bundles X. Consider (x, y) ∈ X×H Y . This is a K×G-space with
action (k, g)(x, y) = (kx, yg−1). The isotropy group of (x, y) is

{(k, g) | ∃h ∈ H such that kx = xh, hy = yg}.
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Describe the local objects through x and y by

kx = xg ρ(k) = g k ∈ K0

hy = yk σ(h) = k h ∈ H0.

For the isotropy group of (x, y) we then have to use ρ◦σ:σ−1(K0)→ G. Therefore,
in order to define a category of type Ω for certain subclasses of compact Lie
groups, it suffices that this class is closed under taking subgroups, composition
of morphisms, and restriction of morphisms to subgroups.

11 Local and Global Categories

We relate the categories Ω(G) to Ω. For this purpose we construct a functor

iG: Ω(G)→ Ω

which is given on object level by G/H 7→ H. Let G/H2 ← G/H0 → G/H1 be a
basic morphism of Ω(G) with H2 ≤ H0 and ρ:H0 → H1, h 7→ g−1hg describing
the G-map G/H0 → G/H2. This is mapped to the local (H2, H1)-bundle given
by ρ. In order to verify the functor property we describe the effect on morphisms
for general representatives. Let

G/H
α←− Z

β−→ G/K

represent a morphism from G/H to G/K. We assign to it the (H,K)-bundle
Z̃0 → Z0 defined by the following pullback

α−1(eH) = Z0

β
��

Z̃0
oo

��
G/K G.oo

This construction is additive and yields therefore a homomorphism

iG: MorΩ(G)(G/H,G/K)→ MorΩ(H,K).

(11.1) Proposition. The assignment iG is compatible with composition and
yields the prescription above for the basic morphisms. 2

(11.2) Proposition. Let j:H → G be an injection. Then iG◦jG
H = iH : Ω(H)→

Ω. 2

Let M : Ω → Z-Mod be a contravariant Z-functor. We obtain from it the
family MG := M ◦ iG of Mackey functors. We also have an associated coherence.
Let

σ:A
i←− B

p−→ C
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be a morphism in LIE. A natural transformation hσ consists of a family of ho-
momorphisms

hσ(C/C0):M(C0) = MC(C/C0)→MAσ
∗(C/C0) = M(ip−1C0).

We have the surjective homomorphism pi−1: ip−1C0 → C0. We define hσ(C/C0) =
M(pi−1). One verifies from the functor property that the hσ constitute a natural
transformation. Moreover:

(11.3) Proposition. The hσ are a strong coherence for the family MG. 2

We now prove a converse.

(11.4) Theorem. A strongly coherent family (MG, hσ) of Mackey functors
arises from a unique Z-functor M by the construction above.

The functor is given on objects by M(H) = MH(H/H). Suppose

σ:G
i←− L

q−→ Q
j−→ K

is a morphism in Ω with inclusions i, j and a surjection q. We define

M(σ):M(K)→M(G)

as the following composition:

MK(K/K)
α∗−→MK(K/Q)

hj←−MQ(Q/Q)
hτ←−MG(G/L)

β∗−→MG(G/G).

Here we have used the following notations: α:K/Q → K/K and β:G/L →
G/G are the canonical quotient maps and τ = (q|i) is a morphism in LIE. From
the fact that the family is strongly coherent it is verified that an isomorphic
diagram (which yields the same morphism in Ω) leads to the same composition,
so that M(σ) is well-defined.

It remains to show that this definition is compatible with the composition of
morphisms.

12 Vector Bundles

We define a global Mackey functor from vector bundles. Let EG(n) → BG(n)
denote the universal n-dimensional complex G-vector bundle [?]. We set

Vn(G) = U(G;BG(n)), Wn(G) = A(G;BG(n)).

We construct a functor Vn on Ω. On objects we set G 7→ Vn(G). Let S be a
(K,L)-bundle. We have the map

Vn(S):U(K;BK(n))→ U(L;S ×K BK(n))→ U(L;BL(n)).
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The first homomorphism is induced by applying the functor S×K? fromK-spaces
to L-spaces, see ??. The second homomorphism is induced by a map kS:S ×K

BK(n)→ BL(n). It is the classifying map of the L-vector bundle S×K EG(n)→
S ×K BK(n). By homotopy invariance of the Euler groups, the morphism Vn(S)
is well-defined. If T is an (L,M)-space, we have

Vn(T ) ◦ Vn(S) = Vn(T ×L S).

A similar construction works for the Burnside groups.
The case of one-dimensional bundles V1(G) is interesting, since it is the basis

for the so called explicit Brauer induction. We describe V1(G) in more explicit
terms. It is the free abelian group on isomorphism classes of G-line bundles over
homogeneous spaces G/H. Such a line bundle corresponds to a one-dimensional
character, i.e., a homomorphism ϕ:H → C∗. We denote by (H,ϕ)G the element
in V1(G) defined by this character. The group is a ring. The product of two
characters is computed in the following manner.

13 Explicit Brauer Induction

Let V be a complex representation of G. Associated to it is the canonical G-
line bundle E(V ) → P (V ) over the complex projective space P (V ) of V . Let
kV :P (V ) → BG(1) denote the classifying map of this line bundle. It represents
an element bG(V ) ∈ W1(G) = W (G).

(13.1) Proposition. The assignment V → bG(V ) is additive, bG(V ⊕W ) =
bG(V ) + bG(W ), and induces therefore an additive homomorphism

bG:R(G)→ W (G)

from the complex representation ring R(G).

Proof. Proof. We have to show the additivity [P (V ⊕W )] = [P (V ) + [P (W )]

in the Burnside group. The deviation fromm additivity is represented by the
classifying map restricted to P (V ⊕W ) r P (V ) r P (W ). This space is, up to
equivariant homotopy, the quotient S(V )×S1 S(W ) of the two unit spheres. All
fixed point sets are spheres bundles with an odd-dimensional sphere as fibre and
have therefore zero Euler characteristic. Thus the deviation space represents the
zero element in the Burnside group. 2

From the construction we see:

(13.2) Proposition. The morphisms bG commute with restriction to
subgroups. 2
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Let G be finite. We define a homomorphism cG:W (G) → R(G) by sending
a basis element (H,ψ) to the induced representation indG

H ψ. From the double
coset formula one verifies immediately:

(13.3) Proposition. The morphisms cG commute with restrictions to
subgroups. 2

(13.4) Proposition. The composition cGbG is the identity for each finite group
G.

Proof. By ?? and ?? it suffices to consider cyclic groups G. From the construc-
tions it is immediately clear that cGbG(V ) = V for a one-dimensional represen-
tation V . 2

The theorem says in particular that each element in R(G) is an integral linear
combination of representations which are induced from one-dimensional repre-
sentations of subgroups. But this linear combination is obtained via the map bG
in some canonical form.

We generalize the theorem to compact Lie groups and give a more conceptual
interpretation to some ingredients in the constructions.

14 The Kernel-Image Theorem for the Burn-

side Ring

Let N be a finite set of subgroups of G and p ∈ Z a prime. A set M(p) of
subgroups is called (N, p)-hyperelementary if it has the following property:
For each L ⊂ H ∈ N there exists K ∈ M(p) such that G/KL is finite and
its cardinality non-zero modulo p, and χ(XL) ≡ χ(XK) mod p for each finite
G-complex.

The localization at the prime ideal (p) is denoted by an index (p). Let Ke(N)
denote the kernel of the restriction map A(G)(p) →

∏
H∈N A(H)(p) and Im(M(p))

the image of the induction map
⊕

L∈M(p)A(L)(p) → A(G)(p). The following the-
orem is a basic fact about the Burnside ring and has many applications to in-
duction theory.

(14.1) Theorem. Ke(N) + Im(M(p)) = A(G)(p).

Proof. The group Ke(N) + Im(M(p)) = A(G)(p) is an ideal of A(G)(p), since
Ke(N), as a kernel of a ring homomorphism, is an ideal and the image of the
induction map is an ideal for any Green functor.

If this ideal were different from A(G)(p), then we could find a maximal ideal q
of A(G)(p) which contains Ke(N)+Im(M(p)). This ideal has the form q = q(L, p),
see [2, p. ]. The inclusion A(G)(p)/Ke(N) →

∏
H∈N A(H)(p) is an integral ring
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extension, see [2, p. ]??. By a basic theorem of commutative algebra [1, 5.10],
the ideal q can be extended to a prime ideal of the product

∏
H∈N A(H)(p). Any

such prime ideal is obtained by lifting a prime ideal of some factor A(H)(p).
Therefore, we can assume that L ⊂ H for some H ∈ N . Let L′ be the defining
group of q(L, p) and choose K ∈ M(p) with L′ ⊂ K, by hypothesis ??. Then
G/L′ ∈ A(G) is the image of K/L′ under induction A(K)→ A(G); thus G/L′ ∈
Ke(N) + Im(M(p)) ⊂ q = q(L, p), a contradiction. 2

A similar theorem holds for the universal Euler ring U(G), since the pro-
jection U(G) → A(G) consists of nilpotent elements and induces therefore an
isomorphism of prime ideal spectra.

(14.2) Corollary. Ke(N) + Im(M(p)) = U(G)(p). 2

15 Hyperelementary Induction

A group K is called p-hyperelementary for the prime p if there exists an exact
sequence

1→ S → K → P → 1

with a finite p-group P and a topologically cyclic group S such that the group of
components S/S0 of S has order prime to p. A group is called hyperelementary
if it is p-hyperelementary for some prime p.

A closed subgroup S of G is called a Cartan subgroup of G if it is topolog-
ically cyclic and the Weyl group WGS is finite. It is called p-regular if its group
of components has order prime to p.

(15.1) Proposition. The set of conjugacy classes of Cartan subgroups of a
compact Lie group is finite.

(15.2) Proposition. A set M(p) for the set N of Cartan subgroups is the set
of p-hyperelementary subgroups.

The next theorem is called the hyperelementary induction theorem .

(15.3) Theorem. Let M be a Green functor such that M(G/G) is torsion free.
Let N be the set of Cartan subgroups of G and suppose that Ke(N) = 0. Then
the induction

ind:
⊕

L∈H

M(G/L)→M(G/G)

from the set H of hyperelementary subgroups in surjective.
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