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Abstract

We determine the multiplication table of the homogeneous spaces in
the Euler ring of the group SO3 and relate this to structural data about
restriction and induction homomorphisms between Euler rings. Certain
specific results use the fact that the Euler ring functor is a Mackey functor
or even a Green functor.

1 Introduction

The Euler ring U(G) of a compact Lie group G was studied in [2] in the context of
additive invariants and induction categories. An element of U(G) is represented
by a compact G-ENR (G-equivariant Euclidean neighbourhood retract) X. The
G-action on X induces for each subgroup H of G (always closed, notation H ≤ G)
an action of the normalizer NGH on the H-fixed set XH . We denote by χ(Y )
the Euler characteristic of a space Y and let χH(X) be the Euler characteristic
χ(NGH\XH) of the orbit space NGH\XH . Two G-ENR’s X and Y define the
same element of U(G) if and only if for each H the equality χH(X) = χH(Y )
holds. Addition and multiplication in U(G) are induced by disjoint union and
Cartesian product, respectively. The value χH(X) only depends on the conjugacy
class of H in G. Let [X] ∈ U(G) denote the element represented by X. The
assignment χH : U(G) → Z, [X] 7→ χ(NGH\XH) is an additive homomorphism.

Additively, U(G) is the free abelian group with basis the isomorphism classes
of homogeneous spaces [G/H] for closed subgroups H of G.

One purpose of this note is to determine the multiplication table of the ho-
mogeneous spaces in U(SO3). The result in itself may not be very informative.
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In fact, a brute force computation is in some sense straightforward but quite te-
dious. We rather want to relate the computation to other structural data and the
concept of a Mackey functor. Thereby we obtain additional information about
U(SO3).

There is a canonical surjective ring homomorphism π = πG: U(G) → A(G)
onto the Burnside ring A(G) of G. The kernel of πG is the nil-radical N(G) of
U(G), see [2, p. 241]. The subgroup N(G) is spanned by the [G/H] for subgroups
H which have infinite index in their normalizer NGH; and A(G) has a Z-basis
of isomorphism classes [G/H] for subgroups H with finite Weyl group WGH =
NGH/H. We let ι: A(G) → U(G) denote the additive inclusion which is the
identity on the canonical basis elements [G/H]. We call b(x) = ιπ(x) the Burnside
part of x ∈ U(G). Thus U(G) is additively the direct sum of the subgroups N(G)
and ιA(G). In order to simplify the notation, we also write H for the basis element
[G/H] if G is clear from the context.

By the way, it will turn out that the nilpotent elements (which are not present
in the Burnside ring) are quite useful. We assume known the group theory and
the geometry of the subgroups of SO3.

In the sequel we describe various methods, apply these to chosen examples
and leave other cases to the reader.

2 Products and Mackey functors

A homomorphism ρ: K → L induces ring homomorphisms

U(ρ): U(L) → U(K), A(ρ): A(L) → A(K)

by viewing an L-space via ρ as K-space. In the case of an inclusion ρ: K ⊂ L we
call it the restriction resL

K . There is also an additive induction homomorphism

indL
K : U(K) → U(L), [X] 7→ [L×K X].

Restriction and induction are the basic ingredients to make the Euler ring functor
into a Mackey functor (Green functor). Here we use the setting of [2, p. 276].

The product [G/K] × [G/L] in U(G) can be given another interpretation.
There exists a canonical G-homeomorphism

G/K ×G/L ∼= G×K resG
K G/L, (uK, vL) 7→ (uK, u−1vL);

and G/L = indG
L(L/L). Thus, starting from the unit element [L/L] ∈ U(L), we

obtain the product as the composition

indG
K resG

K indG
L [L/L].

The induction homomorphism has the simple property indG
K [K/K ′] = [G/K ′].

The basic remaining problem is therefore to express resG
K indG

L [L/L] as a linear
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combination of the basis elements. This is obtained, in general terms, by the
double coset formula (DCF), a main ingredient of a Mackey functor. We do not
determine in this note the relevant DCF’s, but later we use at least its existence.

The double coset formula has the following shape

resG
K indG

L =
∑

α aα indK
K∩g−1Lg ◦c(g) ◦ resL

gKg−1∩L

where aα ∈ Z, the sum is taken over certain double cosets KgL ⊂ G and c(g) is
induced by conjugation with g. In the case of a finite group the aα equal 1 and
the sum is over the double cosets [1, p. 164]. For the general case see [2, p. 280].

In this context there is also an interesting duality: We can interchange the
roles of K and L. Then resG

L indG
K [K/K] is relevant. This is an instance of the

fact that the induction category Ω(G) is self-dual, see [2, p. 274].

3 The Euler ring of SO3

The multiplication table of the [SO3/H] for the Burnside A(SO3)ring was deter-
mined by Schwänzl [5]. The result is stated in [1, p.156 ]. We deduce the result
for U(SO3) from A(SO3); this is not strictly necessary but may be interesting in
itself. We use the restriction r: U(SO3) → U(SO2).

(3.1) Proposition. The ring homomorphism

(π, r): U(SO3) → A(SO3)× U(SO2)

is injective.

Proof. An element in the kernel of π is a linear combination of the Cm. By the
result r(Cm) = 2Cm in 3.8 we see that such elements are detected by r. 2

The ring U(SO2) is trivial. An additive basis consists of SO2 and the cyclic
groups Cm of order m ≥ 1. All products of basis elements which do not involve
the unit element are zero.

We list the conjugacy classes of closed subgroups of SO3 and their normalizers.

H SO3 O2 SO2 A5 S4 A4 Dm, m ≥ 3 D2 Cn, n ≥ 2 C1

NH SO3 O2 O2 A5 S4 S4 D2m A4 O2 SO3

Here Dm is the dihedral group of order 2m and Cn is the cyclic group of order n.
Moreover the alternating groups A5 and A4 are the icosahedral and the tetrahe-
dral group and the symmetric group S4 is the octahedral group. The subgroup
N(SO3) is spanned by the Cn. Let ν: N(SO2) → N(SO3) be the homomorphism
which is the “identity” Cn 7→ Cn on the basis elements.

(3.2) Proposition. The product xy of basis elements x, y in U(SO3) is ob-
tained via the formula xy = b(xy) + 1

2
ν(r(x)r(y)− rb(xy)).
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Proof. By construction, the element xy−b(xy) is contained in the kernel of π and
therefore a linear combination of the form

∑
j ajCj. Then, by 3.8, r(xy−b(xy)) =

2
∑

j ajCj and hence 1
2
νr(xy − b(xy)) =

∑
j ajCj. Now use that r is a ring

homomorphism. 2

In order to obtain from 3.1 and 3.2 explicit results, it is necessary to determine
the value of the restriction homomorphism r on the basis elements. The result
is displayed in the table 3.8. For the verification of the table we have to express
elements [X] ∈ U(G) in terms of the basis elements [G/H].

(3.3) Remark. Suppose [X] =
∑

H aH [G/H], aH ∈ Z; this is a sum over
conjugacy classes of isotropy groups of X. Apply the homomorphism χC to this
equation. From the set of equations

χ(NGC\XC) =
∑

H aHχ(NGC\(G/HC))

the aH can be determined recursively by downward induction. The numbers
χC(G/H) can be determined by groups theory, see 3.5. 3

(3.4) Examples. (1) If we apply 3.3 to the trivial subgroup C = 1, we see
that the sum

∑
aH of the coefficients equals the Euler characteristic χ(G\X) of

the orbit space.
(2) In the case of the SO2-space SO3/L the orbit space SO2\SO3/L is a closed

interval for infinite L and a 2-sphere for finite L. Therefore the sum of the
coefficients in 3.8 is 1 or 2, respectively. Note that SO2\SO3 is a 2-sphere with
standard L-action.

(3) The orbit space O2\SO3/L has in each case the Euler characteristic 1. It is
a closed interval for infinite L, a 2-disk for finite L 6= Cm and a projective plane
for L = Cm. The sum of the coefficients is therefore in each case 1. See table 4.3.

(4) If we apply 3.3 to a maximal isotropy type H = C of X, then G/HH

consists of a single NGH-orbit, and therefore aC = χ(NGC\XC). 3

The use of 3.3 is based on the next general result. It describes the group
theoretic situation. (The symbol ∼L means L-conjugate.)

(3.5) Proposition. The space G/LK = {tL | t−1Kt ≤ L} consists of a finite
number of NGK-orbits [2, p. 41]. Elements sL and tL are in the same NGK-orbit
if and only if the subgroups s−1Ks and t−1Kt are L-conjugate. The isotropy
group of the NGK-action at tL is tNL(t−1Kt)t−1. The number of NGK-orbits
is equal to the number of L-conjugacy classes of subgroups A ≤ L which are
G-conjugate to K. 2

(3.6) Example. Consider X = SO3/L as SO2-space. The isotropy groups
are SO2 or finite cyclic groups. In order to determine X in U(SO2) as a lin-
ear combination of homogeneous spaces we have to know the values L|C =
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χ(SO2\(SO3/L
C)) for L ≤ SO3 and C ≤ SO2. (The normalizer of C in SO2 is

always SO2.) An NSO3L = O2-orbit of SO3/L
C is isomorphic to O2/NLC. The

quotient by SO2 therefore consists of one or two points if NLC is a dihedral or
cyclic group, respectively. From this fact one easily reads off the vales in the list
3.7. Let us look at two cases.

The group Dm, m ≡ 0(2) contains three conjugacy classes of subgroups of
order two and their normalizers are dihedral groups. This accounts for the value
Dm|C2 = 3.

The tetrahedral group A4 has a single conjugacy class of subgroups of order
three and they are equal to their normalizers in A4. This accounts for the value
A4|C3 = 2. 3

(3.7) Proposition. The data L|C which are relevant for 3.8.

O2|SO2 = 1 A5|Ck = 1 k = 5, 3, 2
O2|C2 = 2 S4|Ck = 1 k = 4, 3

SO2|SO2 = 2 S4|C2 = 2
Dm|Cm = 1 m > 2 A4|C3 = 2
Dm|C2 = 2 m ≡ 1(2) A4|C2 = 1
Dm|C2 = 3 m ≡ 0(2) Cm|Cm = 2

(3.8) Proposition. The value of the restriction homomorphism r: U(SO3) →
U(SO2) on the basis elements.

SO3 SO2 Cm 2 Cm

O2 SO2 + C2 − C1 A5 C5 + C3 + C2 − C1

SO2 2 SO2 − C1 S4 C4 + C3 + C2 − C1

Dm Cm + 2 C2 − C1 A4 2 C3 + C2 − C1

Proof. We have to consider the spaces SO3/L as SO2-spaces. The isotropy groups
have the form SO2 ∩ gLg−1.

Consider the case Dm. The isotropy groups are Cm, C2 and C1. Let m > 2. The
isotropy group Cm is maximal. Hence Dm|Cm=1 is its coefficient. For m ≡ 1(2)
also C2 is maximal, hence Dm|C2 is its coefficient. For m ≡ 0(2) the summands
SO2/Cm and SO2/C2 contribute to the C2-fixed points. Hence Dm|C2 = 3 is the
sum of the coefficients and 2 is again the coefficient of C2. (The case of D2 is
included.) Finally we use that the sum of all coefficients is 2 and therefore −1
the coefficient of C1.

Consider the case A5. The group has elements of order 2, 3, 5. The related
isotropy groups are maximal, hence their coefficient is 1. 2
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The multiplication table of the homogeneous spaces in A(SO3) can be found
in [1, p. 156]. From the multiplication in A(SO3) and 3.2 one now obtains the
multiplication table of U(SO3) by a simple computation. Note that r(x)r(y) = 0
if x and y are finite groups.

(3.9) Example. From the Burnside ring we know that O2O2 = O2 + D2 + R,
where R is a linear combination of cyclic groups. We now apply the restriction
homomorphism r. The left side yields

(SO2 + C2 − C1)
2 = SO2 + 2C2 − 2C1,

since the product in U(SO2) is trivial. The right hand side yields, by 3.8,

(SO2 + C2 − C1) + (C2 + 2C2 − C1) + 2R.

Thus R = −C2. 3

(3.10) Proposition. We list below the deviation of the multiplication in
U(SO3) from the multiplication in A(SO3) for the cases where no dihedral groups
are involved. Let us write K · L = b(K · L) + R(K, L); here R(K, L) is a linear
combination of cyclic groups. We know already R(O2, O2) = −C2.

R(O2, A5) −3 C2 + C1 R(A5, A5) −C5 − 2 C3 − 3 C2 + 2 C1

R(O2, A4) C3 − C2 R(A4, A4) −2 C3 − C2 + C1

R(O2, S4) −3 C2 + C1 R(A4, A5) −2 C3 − C2 + C1

R(O2, SO2) C2 − C1 R(S4, S4) −C4 − C3 − 4 C2 + 2 C1

R(SO2, A5) r(A5) R(S4, A4) −C3 − 2 C2 + C1

R(SO2, A4) r(A4) R(S4, A5) −2 C3 − 4 C2 + 2 C1

R(SO2, S4) r(S4) R(SO2, SO2) r(SO2)

(3.11) Example. The ring U(SO3) contains the orthogonal idempotents

x = A5 − A4 −D5 −D3 + C3 + 2 C2 − C1,
y = O2 + S4 −D4 −D3 + C2.

They lift the idempotents of A(SO3) with the same name which are displayed in
[1, p. 156]. Although this can be verified from our results in a straightforward
(but tedious) manner, we will give another argument in the sequel. 3

4 Restriction to the orthogonal group

In this section we study in the restriction homomorphism U(SO3) → U(O2).
In order to compare the result with 3.8 we list the values of the restriction
U(O2) → U(SO2).
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(4.1) Proposition. The restriction homomorphism U(O2) → U(SO2).

O2 SO2 Dm Cm

SO2 2 SO2 Cm 2 Cm

Proof. The isomorphism of SO2-spaces O2/Dm
∼= SO2/Cm shows that Dm is sent

to Cm. 2

(4.2) Proposition. The multiplication table for U(O2). The symbol (m, n)
denotes the greatest common divisor of m and n.

O2 SO2 Dn Cl

Ck Ck 2Ck 0 0
Dm Dm Cm 2D(m,n) − C(m,n)

SO2 SO2 2SO2

O2 O2

Proof. Consider the product of Dm with Dn. The isotropy groups are D(m,n) and
C(m,n). Hence the product has the form aD(m,n) + bC(m,n). The coefficient a is the
order of the Weyl group, hence equals 2. The space of double cosets is a closed
interval and has Euler characteristic 1. Hence b = −1, see (1) in 3.4. 2

(4.3) Proposition. The restriction homomorphism U(SO3) → U(O2).

O2 O2 + D2 −D1 Cm Cm

SO2 SO2 + D1 − C1 A5 D5 + D3 + D2 − 3 D1 + C1

Dm, m ≡ 1(2) Dm −D1 + C2 S4 D4 + D3 + D2 − 3 D1 + C1

Dm, m ≡ 0(2) Dm + 2 D2 − 3 D1 + C1 A4 D2 −D1 + C3

One should observe that in SO3 the equality D1 = C2 holds, but not in O2

(rotation versus reflection).

Proof. One method of proof combines the information contained in 3.8, 3.4 part
(3) and 4.1. In addition, one has to know the isotropy types which occur in SO3/L
as O2-space. We consider an example. For m ≡ 0 mod 2 the element r(Dm) is a
linear combination of Dm, D2, D1 and C1. By 3.4 the sum of the coefficients is
one. Then we use 3.8 and 4.1 and compare coefficients. 2

(4.4) Proposition. The kernel of the restriction r: U(SO3) → U(O2) has rank
4 and is spanned by the following elements (called exceptional)

a = A5 − A4 −D5 −D3 + C3 + 2C2 − C1

b = S4 + A4 −D4 −D3 − C3 + C2

c = 3A4 −D2 − 3C3 + C1

d = SO3 −O2 + A4 − C3.
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The cokernel of r is free of rank one.

Proof. One can verify from 4.3 that these elements are contained in the kernel;
we will interpret these elements and their properties in a moment from a more
systematic point of view. Let η: U(O2) → Z be the surjective homomorphism
which sends SO2 to −1, the Dm to 1 and all other basis elements to zero. Then
one verifies from 4.3 that the kernel of η is the image of r.

Suppose α is contained in the kernel of r. Write α in terms of the basis of
homogeneous spaces. By comparing coefficients one sees directly that the Dm,
m > 5 do not occur in α. Moreover, one sees that the coefficients of SO3 and O2

must have sum zero. Thus, subtracting a suitable multiple of d, we can eliminate
these basis elements. Then we eliminate A5 and S4 with the help of a and b.
There remains a linear combination of A4, Dj and Cm in the kernel. From 4.3
we see that Dj, j = 5, 4, 3 cannot occur. Since r(D2) = 3D2 − 3D1 + C1, we can
eliminate A4 and D2 simultaneously by subtraction of a multiple of c. It remains
a linear combination of the Cm. By inspection, r is injective on such elements. 2

5 The exceptional elements

We now discuss the exceptional elements a, b, c, d in more detail. We first collect
their multiplicative properties.

(5.1) Proposition. The multiplication table of the exceptional elements.

a b c d
d a b + c 3c d + c
c 0 3c 6c
b 0 b + c
a a

The elements e1 = a, e2 = 2b− c, e3 = c, e4 = d− b− a satisfy

e2
1 = e1, e2

2 = 2e2, e2
3 = 6e3, e2

4 = e4, eiej = 0

for i 6= j. From these relations the multiplication table can be recovered. 2

A verification of these relations from the multiplication table of the homoge-
neous spaces would be quite awkward. We therefore discuss these elements from
other view points.

Recall that the Burnside ring U(G) = A(G) of a finite group G is a subring of
the ring C(G) of Z-valued functions on the set of conjugacy classes of subgroups
of G. The inclusion A(G) → C(G) assigns to [X] ∈ A(G) the function (H) 7→
χ(XH) (Burnside marks). The subring A(G) of C(G) can be characterized by a
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set of congruence relations. From these congruences it is easy to verify that U(G)
contains the following elements (see [1, p. 11]).

ε1 ∈ U(A5); ε1(A5) = 1, ε1(H) = 0 for H 6= A5

ε2 ∈ U(S4); ε2(S4) = 2, ε2(H) = 0 for H 6= S4

η2 ∈ U(S4); η2(S4) = 1, η2(A4) = 3, η2(H) = 0 for H 6= S4, A4

ε3 ∈ U(A4); ε3(A4) = 3, ε3(H) = 0 for H 6= A4

These elements therefore satisfy

ε2
1 = ε1, ε2

2 = 2ε2, ε2
3 = 3ε3.

Now recall the restriction and induction homomorphisms resG
H and indG

H and
the double coset formula (DCF) for the computation of resG

H indG
K . The Euler

ring functor is a Mackey functor on the induction category Ω(G); for details see
sections IV.8 and IV.9 in [2]. The restrictions are ring homomorphisms and for
the induction we have the Frobenius reciprocity (FR)

(indG
H x) · y = indG

H(x · resG
H y)

for x ∈ U(H) and y ∈ U(G).
Let L be a finite subgroup of G = SO3. Suppose x ∈ U(L) has Burnside marks

with value zero on dihedral and cyclic groups. Then indG
L x is contained in the

kernel of the restriction to U(O2), a consequence of the DCF. The elements εj

and η2 just defined have this property.
The elements a, b, c, d are obviously images under induction of elements with

the same name but where now the groups in the sum are subgroups of the
appropriate L. In the case of S4 one has to be a little careful, though. Since S4

has two conjugacy classes of elements of order 2, one has to interpret in this case
the symbol C2 as the group C#

2 generated by a transposition.
We now claim that indG

H ε1 is an idempotent element contained in the kernel
of r; here H = A5, G = SO3. It will turn out that this element equals e1. The
DCF says that resG

O2
indG

H ε1 is an integral linear combination of elements of the
form

indg−1Kg ◦ c(g) ◦ resH
K(ε1)

where K has the form H ∩ gO2g
−1 and c(g) is a conjugation automorphism. For

our present purpose it is not necessary to know the precise form of the DCF.
The groups K are dihedral or cyclic groups, and by the very definition of ε1

the elements resH
K(ε1) are zero. This shows r(indG

H ε1) = 0, as already remarked
above. Now we use FR:

ind(ε1) · ind(ε1) = ind(ε1 · res ind ε1) = ind(ε2
1) = ind(ε1).

This uses res ind ε1 = ε1, again a consequence of the DCF. For the purpose of
finding generators of the kernel of r it would be sufficient to see that ε1 has the
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form A5 + ρ where ρ is a linear combination of basis elements different from A5,
and this is easy. But actually ε1 is exactly the linear combination displayed for
the element a and therefore ind ε1 = e1.

The space P = SO3/A5 is the Poincaré sphere. We consider it as an A5-
manifold. It has a single fixed point. When we excise an open invariant disk
about the fixed point we obtain an A5-manifold D (Poincaré disk), where each
H 6= A5 has a homology disk as fixed point set. Hence the Burnside mark is
the function 1 − ε1. This gives a topological interpretation for the idempotent
element ε1.

There exists a finite SO3-CW-complex X with empty fixed set XH for H =
SO3, A5 and with contractible fixed sets for all other groups. See [4] for the
geometric significance of this Oliver disk. From these properties of the fixed sets
we see that [X] is an idempotent element of U(SO3). From [4, p. 234] we see,
that [X] is the linear combination O2 + S4 −D4 −D3 + C2 in terms of the basis
elements. Thus 1 − [X] is the element which was called d − a above. From the
geometry we also see that this element is contained in the kernel of r. (In the
Burnside ring it also represents the element 1− y in the notation of [1, p. 156].)

We now turn our attention to A4. It is not difficult to verify that ε3 is the
element 3A4 −D2 − 3C3 + C1. Hence e3 = ind ε3. As in the previous case we use
FR to verify e2

3 = 6e3; it uses res ind(ε3) = 2ε3, a consequence of the DCF.
Finally one computes η2 as a linear combination of basis elements and obtains

the relation ind η2 = b as a consequence.
One can also derive the orthogonality relations for the ei by using FR. For

instance, the relation e1e4 = 0 amounts to showing that the restriction of the
Oliver disk to A5 represents the same element as the Poincaré disk.

(5.2) Proposition. The exists an injective homomorphism of rings

U(SO3) → U(O2)× Z4.

The first component is the restriction r. The other components are the fixed point
ring homomorphisms [X] 7→ χ(XH) for the groups H = A5, A4, S4, SO3.

Proof. Let x be in the kernel. From 4.4 we know that x is a linear combination
of a, b, c, d. Now consider the fixed points of x for SO3, A5, S4 and A4, in that
order, to conclude that x = 0. 2

Note that the multiplicative structure of the image ring is fairly simple. A
similar discussion can be applied to the Burnside ring. Thus one could compute
the multiplication table from these homomorphisms.

6 Standard representations in the Euler ring

We now study the situation which is dual to 3.8 and 4.3. Here we have to de-
termine the L-spaces SO3/SO2

∼= S2 and SO3/O2
∼= RP2 (standard L-action on
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the 2-sphere and the projective plane) in the Euler ring U(L) for the subgroups
L of SO3.

(6.1) Proposition. The standard representations in the Euler ring.

L S2 in U(L) RP2 in U(L)
O2 SO2 + D1 − C1 O2 + D2 −D1

SO2 2SO2 − C1 SO2 + C2 − C1

Dm, m ≡ 1(2) Cm + 2D1 − C1 Dm

Dm, m ≡ 0(2) Cm + D1 + D#
1 − C1 Dm + D2 + D#

2 − C2 −D1 −D#
1 + C1

Cm 2Cm Cm

A5 C5 + C3 + C2 − C1 D5 + D3 + D2 − 3C2 + C1

S4 C4 + C3 + C#
2 − C1 D4 + D3 + D#

2 − C2 − 2C#
2 + C1

A4 2C3 + C2 − C1 D2 + C3 − C2

We have used the following notation. The group Dm has a single conjugacy class
of subgroups isomorphic to Dk if m/k is odd and two conjugacy classes if m/k is
even. In the latter case we denote the conjugacy classes by Dk and D#

k . We also

understand that Dk ∼ D#
k if m/k is odd.

The group S4 has two conjugacy classes of subgroups of order 2: The group
C#

2 generated by a transposition and C2. The normalizer of C#
2 is denoted D#

2 .
The normalizer of C2 is a D4 and contains another conjugacy class D2.

Proof. The case of infinite L in the table is easily derived from the geometry.
Suppose L is finite. In the case of S2 the isotropy groups are cyclic. Each

element g 6= 1 has two fixed points on S2. All elements in the cyclic subgroup
generated by g have the same fixed points. The isotropy group of a fixed point
is therefore a maximal cyclic subgroup of L. The non-trivial isotropy groups of
the action are therefore the maximal cyclic subgroups. If C ≤ L is such a group
and aC the coefficient of C, then

2 = χ(S2) = χ((S2)C) = aC |L/CC | = aC |WLC|.

Hence aC = 1, 2 and |WLC| = 2, 1, respectively. From this information and the
knowledge of the sum of the coefficients we obtain the data of the table.

Now we turn our attention to the projective plane. Each element g 6= 1 has
either a unique fixed point (order of g not 2) or a fixed point and a fixed S1 (g
of order 2); in each case the Euler characteristic is 1. The general formula

χ(X/L) = 1
|L|

(∑
g∈L χ(Xg)

)
,

see [1, p. 96], thus yields in our case that χ(X/L) = 1. A closer study of the
topology gives the result stated in part (3) of 3.4. Note that if an isotropy group
of a fixed point is a dihedral group, then the orbit space is a manifold with
boundary.
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The most complicated case is perhaps the group S4. The orbit space is a disk.
The next figure indicates the subsets of a given orbit type.
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In order to visualize the situation the reader may start with a standard cube in
3-space with vertices (γ1, γ2, γ3), γj ∈ {±1} and its symmetry group S4.

The orbit space in the case A5 has a similar shape. The vertices represent Dj

for j = 2, 3, 5 and the edges C2. The interior of the triangle corresponds in both
cases to the free orbits.

By the way, in order to determine the coefficients of the groups one can take
the Euler characteristic minus 1 of the one-point compactification of the subsets
with given type in the orbit space. For example, in the S4-case the C#

2 -set consists
of two open intervals; the one-point compactification is a wedge of two circles
with reduced Euler characteristic −2. 2

When we pass via induction to SO3 then 6.1 yields the same result as 3.8 and
4.3 (by the duality mentioned earlier).

7 The Euler ring of SU2

We have the double covering p: SU2 → SO3. It induces ring homomorphisms
A(p) = p∗ and U(p) = p∗. Let H∗ = p−1(H). Then p∗[G/H] = [G∗/H∗]. The
homomorphism U(p) is injective. The only basis elements of SU2 which are not
contained in the image of U(p) are the Cm with m ≡ 1 mod 2. It is easy to
investigate their product behaviour. By the way, C∗

m = C2m. In U(SU2) we have

O∗
2 · Cn = Cn, SO∗

2 · Cn = 2 Cn, SU2 · Cn = Cn.

The remaining products with Cn are zero. Thus the Euler ring of SU2 is basically
the same as the Euler ring of SO3. The Euler ring U(SU2) was investigated by
Hoffmann [3].
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