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Abstract

Induction categories are the sourse categories of Mackey functors. We
define such categories in an axiomatic setting and show that standard
results of axiomatic representation theory can be deduced in this more
general setting.

1 Induction categories

Let C be a category with a set of isomorphism classes of objects. We denote
by Ob(C) its class of objects. The set of morphisms from A to B is denote by
C(A, B), MorC(A, B), HomC(A, B), or without the index C. The identity (of the
object A) is idA, 1A, id, 1. Let R be a commutative ring. An R-category is a
category where the set of morphisms Hom(A, B) between any two objects A, B
carries the structure of a left R-module and where composition

Hom(B, C)× Hom(A, B)→ Hom(A, C), (g, f) 7→ g ◦ f

is R-bilinear. An R-functor F : C → D between R-categories is a functor which is
R-linear on the morphism modules F : Hom(A, B)→ Hom(FA, FB). We denote
by R-MOD the R-category of left R-modules.

We consider diagrams in C

(β|α): A
α←− X

β−→ B.

The diagram (β|α) is isomorphic to the diagram

(β′|α′): A
α′←− X ′ β′−→ B
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if there exists an isomorphism σ: X → X ′ in C such that α′σ = α, β′σ = β. Let
[β|α] denote the isomorphism class of the diagram (β|α); thus [β|α] = [βσ|ασ]
for an isomorphism σ. If C has products, then a diagram (β|α) corresponds to a
morphism X → B×A, and isomorphism of diagrams corresponds to isomorphism
of objects in the category of objects over B × A.

(1.1) Definition. An induction category IC for C is an R-category with
the following properties:

(1) Ob(C) = Ob(IC).
(2) For A, B ∈ Ob(C) the morphism set IC(A, B) is the free R-module on

the set of isomorphism classes of diagrams in C

(β|α): A
α←− X

β−→ B.

The identity of A is [1A|1A].
(3) The following rules hold for the composition in IC:

[α| id] ◦ [β| id] = [αβ| id],
[ id |γ] ◦ [id |δ] = [id |δγ],
[β| id] ◦ [id |α] = [β|α].

(4) Suppose [id |α]◦[β| id] =
∑

s ns[αs|βs] with ns ∈ R and certain morphisms
βs: Zs → B and αs: Zs → B. Then for each s the equality ααs = ββs

holds; it does not depend on the choice of the representatives.
If the assignment [α|β] 7→ [β|α] extends to an R-functor D from IC into the dual
category ICop we call IC an induction category with self-duality . 3

For the moment the ground ring R will be fixed and is therefore not recorded
in the notation of the category. We discuss the axioms.

(1.2) The assignment α 7→ [α| id] is a covariant functor ι∗: C → IC which is the
identity on objects. 3

(1.3) The assignment β 7→ [id |β] is a contravariant functor ι∗: C → IC which
is the identity on objects. 3

(1.4) From 1.1 and associativity of composition we obtain the rules

[α| id] ◦ [β|γ] = [αβ|γ], [β|γ] ◦ [id |δ] = [β|δγ].

Diagrams (α| id) and (α′| id) are isomorphic if and only if α = α′. Therefore ι∗ is
an embedding of C. We identify C via ι∗ with a subcategory of IC. Similarly, ι∗

yields an embedding of the dual category Cop into IC. Since, by part (3) of 1.1,
[β| id] ◦ [id |α] = [β|α], we see that the images of ι∗ and ι∗ span IC. We call β the
covariant and α the contravariant component of [β|α]. 3
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(1.5) For an isomorphism σ in C special relations hold:

[β|α] = [βσ|ασ]
[σ| id] = [id |σ]−1

[ id |β] ◦ [σ| id] = [id |σ−1β]
[ id |σ] ◦ [α| id] = [σ−1α| id].

We display an identity of the type

[id |α] ◦ [β| id] =
∑

s ns[αs|βs] =
∑

s ns[αs| id] ◦ [id |βs]

from part (4) in 1.1 in the form of a diagram∑
s nsZs

αs //

βs

��

A

α

��
B

β // X.

It is not really a diagram in our category but rather a formal pictorial notation.
We think of it as a replacement for a pullback diagram of (β, α). In the sequel
we refer to this diagram as a pullback and call (ns, Zs, βs, αs) the pull back
data of (β, α). The transitivity of pullbacks is implicitly contained in the
associativity of composition in a category, if applied to (id |α) ◦ (β| id) ◦ (β′| id).
Explicitly, it amounts to the following: Let∑

t mstYst
βst //

β
′
st

��

Zs

βs

��
B

′ β
′

// B

be the pullback data for (β
′
, βs); in the summation, the second index t runs

through some set I(s) which depends on the first index s. Then the diagram∑
s,t nsmstYst

αsβst //

β
′
st

��

A

α

��
B

′ ββ
′

// X

displays the pullback data for (ββ
′
, α). In fact, these relations are the basic ones:

(1.6) Proposition. Suppose for each pair α: A→ X and β: B → X a compo-
sition

(1|α) ◦ (β|1) =
∑
s

ns(αs|βs)
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with ns ∈ R and ααs = ββs is given such that for each isomorphism σ

(1|σ) ◦ (β|1) = (σ−1β|1), (1|α) ◦ (σ|1) = (1|σ−1α)

and such that

((1|α1) ◦ (1|α2)) ◦ (β|1) = (1|α1) ◦ ((1|α2) ◦ (β|1))

(1|α) ◦ ((β1|1) ◦ (β|1)) = ((1α) ◦ (β1|1)) ◦ (β2|1)

whenever these expressions make sense. Then

(α1|α) ◦ (β|β1) =
∑
s

ns(α1αs|β1βs)

is a well-defined associative composition and thus yields the structure of an in-
duction category IC. 2

We can also specify the preceding proposition in terms of coefficient matrices.

(1.7) Proposition. Write the composition in the form

(1|a)(b|1) =
∑
(c,d)

λa,b
c,d(c|d)

where the sum is taken over pairs of morphisms (c, d) such that ac = bd. Then
these data define an induction category if and only if the following holds:

λm,ab
cd,n =

∑
w

λm,a
c,w λw,b

d,n

λab,m
n,cd =

∑
w

λb,w
n,dλ

a,m
w,c

Let s, t be isomorphisms. Then

λa,b
cs,ds = λa,b

c,d

λs,b
s−1b,1 = 1 = λa,t

1,at−1

and λs,b
m,d = 0 = λa,t

c,n if c and d are not isomorphisms. 2

Suppose the induction category has a self-duality D. Then we obtain: Suppose
(id |α) ◦ (β| id) =

∑
s ns(αs|βs). Then (id |β) ◦ (α| id) =

∑
s ns(βs|αs).

The commutativity (??) implies that the diagram (??) is equivalent to the
diagram ∑

s nsZs
βs //

αs

��

B

β

��
Aα // X.
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2 Pullback Categories

Let C be a category and let C1, C2 be subcategories. The three categories have
the same objects. We assume that the isomorphisms of C are contained in Cj.
The diagrams

(b|a): A
a←− X

b−→ B

with a ∈ C1 and b ∈ C2 are the objects of a category C|(A, B). The morphisms
(b|a) → (b′|a′) are the morphisms σ ∈ C such that a′σ = a and b′σ = b.
We assume that C has (strictly transitive functorial) pullbacks such that in a
pullback

Z
b̃ //

ã
��

A

a

��
B

b // X

with b ∈ C2 and a ∈ C1 the morphisms ã ∈ C1 and b̃ ∈ C2. We define a category
PC = P (C; C1, C2) with the same objects as C. The class of diagrams (b|a) as
above is the class MorPC(A, B). Composition is defined as

(c|d) ◦ (a|b) = (ac̃|db̃)

where in the diagram

Z
b̃ //

c̃
��

Y
d //

c

��

C

X
b //

a

��

B

A

the square is a pullback. By assumption (??) this is again an allowable diagram.
This category structure and the category structure on the diagrams induce on
PC the structure of a 2-category. It is called a pullback category .

In most cases the vertical structure of the 2-category is not relevant. In that
case we define P1(C; C1, C2). The morphisms from A to B are the isomorphism
classes of diagrams above. Composition is again defined by the pullback con-
struction, but one can now dispense with the strict transitivity of pullbacks.

3 Mackey Functors

Let C be a category with induction category IC. A Mackey functor an IC
is a contravariant R-functor from IC into R-Mod. A morphism between Mackey
functors is a natural transformation. LetM(IC) denote the R-category of Mackey
functors on IC.
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A bifunctor M = (M∗, M∗) on C with values in the category A consists of
a covariant functor M∗ and a contravariant functor M∗ from C into A which
have the same value on objects. A bifunctor is called compatible with iso-
morphisms if for each isomorphism α the relation M∗(α)M∗(α) = id holds.
A morphism M → N between bifunctors consists of a family of linear maps
M(S) → N(S), S ∈ Ob(C), which constitute a natural transformation of the
covariant and the contravariant part. We thus obtain the category of bifunctors.

A Mackey functor M is completely determined by the bifunctor (M∗ =
Mι∗, M∗ = Mι∗). This is due to the fact that the images of ι∗ and ι∗ span
IC. By ??, the bifunctor of a Mackey functor is compatible with isomorphisms.
Let f : S → T be a morphism in C. We write f ∗ = Mι∗(f) and f∗ = Mι∗(f).
The upper index is for contravariant morphisms as in cohomology. Morphisms
f∗ are sometimes called restriction maps , morphisms f ∗ transfer maps or
induction maps . This terminology comes from representation theory.

An example of a Mackey functor is the contravariant Hom-functor in IC.

(3.1) Proposition. Let M be a Mackey functor and (M∗, M
∗) the associated

bifunctor. Then this bifunctor is compatible with isomorphisms. If (id |α)(β| id) =∑
s ns(αs|βs) in IC, then

β∗α∗ =
∑

s

ns(βs)∗α
∗
s

for any two morphisms α: A→ X and β: B → X in C. We sometimes call (??)
the double coset formula. 2

(3.2) Proposition. Let (M∗, M
∗) be a bifunctor which is compatible with mor-

phisms and satisfies ?? for each pair of morphisms. Then there exists a unique
Mackey functor M with associated bifunctor (M∗, M

∗).

Proof. We define M(β|α) = α∗β
∗. Since the bifunctor is compatible with iso-

morphisms, this is well-defined on isomorphism classes of diagrams. We extend
this definition by R-linearity to the morphism modules of IC. The double coset
formula is used to verify that M is compatible with composition. 2

Let M , N , and L be Mackey functors for IC. A bilinear map or a pairing
M ×N → L between Mackey functors is a family of R-bilinear maps

M(S)×N(S)→ L(S), (x, y) 7→ x · y,

one for each object S of C, such that for each morphism f : S → T in C the
following holds:

L∗f(x · y) = (M∗fx) · (N∗fy), x ∈M(T ), y ∈ N(T )
x · (N∗fy) = L∗f((M∗fx) · y), x ∈M(T ), y ∈ N(S)
(M∗fx) · y = L∗f(x · (N∗fy)), x ∈M(S), y ∈ N(T ).
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A universal bilinear map M ×N → M2N is called a tensor product (or, be-
cause of the notation, a box product) of M, N . (Universal means, of course, that
any other pairing M ×N → L is obtained from the universal one by composing
with a unique morphism M2N → L.)

In order to establish the canonical associativity of the box product we define a
trilinear map M×N×P → Q between Mackey functors as a family of trilinear
map

M(S)×N(S)× P (S)→ Q(S), (x, y, z) 7→ x · y · z
such that

f ∗(x · y · z) = f ∗x · f ∗y · f ∗z

and
f∗(f

∗x · f ∗y · z) = x · y · f∗z
and similarly if the two contravariant maps appear at other places. In the same
way one defines n-linear maps between Mackey functors.

A Green functor A is a Mackey functor A: IC → R-Mod together with a
pairing A×A→ A such that for each object S the pairing map A(S)×A(S)→
A(S) turns A(S) into an associative R-algebra with unit such that the morphisms
A∗(f) preserve the units.

A left module over the Green functor A is a Mackey functor M together
with a pairing A×M →M such that for each object S the pairing map A(S)×
M(S)→M(S) equips M(S) with the structure of a left unital A(S)-module.

4 Canonical Pairings

We fix a category C and an associated induction category IC. For S ∈ C let U(S)
be the free abelian group on isomorphism classes of objects α: X → S over S.
We denote by [α] ∈ U(S) the element represented by α. We make the assignment
S 7→ U(S) into a Mackey functor. Let f : S → T in C be given. Then f∗: U(S)→
U(T ) is defined as composition with f ; functoriality (gf)∗ = g∗f∗ is obvious.
Suppose (id |f) ◦ (α| id) =

∑
s ns(fs|αs); then we define f ∗[α] =

∑
s ns[fs]. The

functoriality (gf)∗ = f ∗g∗ is a direct consequence of the transitivity of pullbacks.
Thus we have defined a bifunctor. The double coset formula is again a direct
consequence of the transitivity of pullbacks. By ?? we have a Mackey functor U .
The following results show its universal character.

(4.1) Proposition. Let M be any Mackey functor. There exists a canonical
pairing U ×M → M . If u = [f : X → S] ∈ U(S) and x ∈ M(S), then u · x is
defined as f∗f

∗x.

Proof. We have to verify the axioms of a pairing. Let h: S → T in C be given.
Then

h∗(u · h∗x) = h∗f∗f
∗h∗x = h∗u · x
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since h∗u = [hf ]. Let ∑
s nsZs

hs //

fs

��

S

h

��
X

f // T

be the pullback data in IC. Then h∗u =
∑

ns[hs] and therefore

h∗(h
∗u · x) =

∑
s

nsh∗hs∗h
∗
sx =

∑
s

nsf∗fs∗h
∗
sx = f∗f

∗h∗x = u · h∗x.

The computation

h∗(u · x) = h∗f∗f
∗x =

∑
s

nshs∗f
∗
s f ∗x =

∑
s nshs∗h

∗
sh

∗x = h∗u · h∗x

shows the second axiom of a pairing. 2

(4.2) Proposition. The pairing of the previous proposition, applied to M = U ,
makes U into a Green functor and M into a left U-module.

Proof. The relation 1 ·x = x ·1 = x is easily seen. We have to verify associativity
of the multiplication. Let u: X → S and v: Y → S be given. On the one hand
u · (v · x) = f∗f

∗g∗g
∗x. On the other hand

(u · v) · x =
∑

t

mt(fft)∗(ggt)
∗x =

∑
t

f∗ft∗g
∗
t g

∗x = f∗f
∗g∗g

∗x.

Here we have used the pullback data mt, ft, gt of f, g.
The same proof shows that M is a U -module. 2

The multiplication in U(S) has the following description. Suppose (id |α) ◦
(β| id) =

∑
s ns(αs|βs). Then [α][β] =

∑
s ns[ααs] =

∑
s ns[ββs] (compare ax-

iom ?? of an induction category). The identity is represented by idS. The next
proposition is easily verified from the definitions.

(4.3) Proposition. The ring U(S) is canonically isomorphic to a subring of
the endomorphism ring EndIC(S), namely as the subring generated by morphisms
of the type (α|α) under the map α 7→ (α|α). 2

(4.4) Proposition. The pairings Σ: U ×M → N correspond bijectively to the
morphisms σ: M → N of Mackey functors.

Proof. Given a morphism σ, we obtain a pairing U ×M → N by composing the
canonical pairing Λ: U ×M →M of (??) with σ.
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Given a pairing Σ: U ×M → N we define

σΣ(S): M(S)→ N(S), x 7→ 1 · x.

From the axioms of a pairing it is verified that the σ(S) constitute a morphism
of Mackey functors.

The two constructions are inverse to each other. 2

(4.5) Proposition. Let A be a Green functor. The morphisms

λ(S): U(S)→ A(S), [f ] 7→ f∗f
∗(1S)

are ring homomorphisms and constitute a morphism of Mackey functors.

Proof. Let ns, fs, gs be the pullback data for f, g. We compute

λ(S)([f ][g]) = λ(S)(
∑

s

ns[ffs])

=
∑

s

nsf∗fs∗g
∗
sg

∗(1S)

= f∗f
∗g∗g

∗(1S)

= f∗f
∗λ(S)(1s)

= (f∗f
∗)(1 · λ(S)(g))

= f∗(f
∗1 · f ∗λ(S)(g))

= f∗f
∗1 · λ(S)(g)

= λ(S)(f) · λ(S)(g).

Moreover λ(S)(1) = id∗ id∗(1) = 1. The following two computations verify the
compatibility with morphisms. Let h: T → S be given, and let (mt, ft, ht) denote
the pullback data for (f, h). The contravariant case

λ(T )(h∗[f ]) = λ(T )(
∑

t

mt[ht])

=
∑

t

mtht∗h
∗
t 1T =

∑
t

mtht∗h
∗
t h

∗1S

=
∑

t

mtht∗f
∗
s f ∗1S =

∑
t

h∗f∗f
∗1S

= h∗λ(S)[f ].

And finally

λ(T )(k∗[f ]) = λ(T )([kf ]) = k∗f∗f
∗k∗1T = k∗f∗f

∗1S = h∗λ(S)[f ]

settles the covariant case. 2
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5 The Projective Induction Theorem

Let C be a category and IC an associated induction category. We call any family
Σ = (Sj | j ∈ J) of objects an induction system . We assume that C ccontains
a point P . This is a terminal object: Each object S of C has a unique morphism
p(S): S → P .

Let M be a Mackey functor. An induction system Σ leads to a homomorphism
p(Σ), called induction morphism , and i(Σ), called restriction morphism :

p(Σ):
⊕
j∈J

M(Sj)→M(P ), (xj | j ∈ J) 7→
∑
j∈J

p(Sj)∗xj

i(Σ): M(P )→
∏
j∈J

M(Sj), x 7→ (p(Sj)
∗x | j ∈ J).

We call the induction system Σ projective , if p(Σ) is surjective, and injective ,
if i(Σ) is injective. Suppose S, T ∈ Ob(C). The corresponding pullback will be
denoted

∑
s ns(S, T )Zs

bs(S,T ) //

as(S,T )

��

T

p(T )

��
S

p(S) // P

with s ∈ I(S, T ). Let Σ = (Sj | j ∈ J) be an induction system. We have
morphisms

p(Σ, T ):
⊕
j,s

M(Zs)→M(T ), (x(j, s)) 7→
∑
j,s

ns(S, T )bs(S, T )∗x(j, s)

i(Σ, T ): M(T )→
⊕
j,s

M(Zs), x 7→ (as(S, T )∗x | j, s).

The sums are double sums and s ∈ I(Sj, T ).

Theorem 5.1 Let A be a Green functor and M a left A-module. Let Σ be a
projective induction system for A. Then p(Σ, T ) is split surjective and i(Σ, T ) is
split injective.

Proof. Since p(Σ) is surjective for A, we can find xj ∈ A(Sj) such that∑
j∈J

p(Sj)∗xj = 1 ∈ A(P ).

Of course, the sum is essentially finite, so that we can assume without essential
restriction, that J is finite. We define a map

q(Σ, T ): M(T )→
⊕
j,s

M(Zs), x 7→ (a∗sxj · b∗sx | j, s).
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Here a∗sxj ∈ A(Zs), b∗sx ∈ M(Zs) and the dot denotes the pairing A×M → M .
We claim

p(Σ, T ) ◦ q(Σ, T ) = idM(T ) .

For the proof we use the basic identity∑
s∈I(Sj ,T )

nsbs∗a
∗
s = p(T )∗p(Sj)∗,

valid for any Mackey functor, and the properties of a pairing.

p(Σ, T )q(Σ, T )x =
∑

j,s nsbs∗(a
∗
sxj · b∗sx)

=
∑
j,s

nsbs∗a
∗
sxj · x

=
∑
j

p(T )∗p(Sj)∗xj · x

= p(T )∗(
∑
j

p(Sj)∗xj) · x

= p(T )∗1 · x
= x.

Thus q(Σ, T ) is a splitting for p(Σ, T ).
A splitting j(Σ, T ) for i(Σ, T ) is defined in a dual fashion

j(Σ, T ):
⊕
j,s

M(Zs)→M(T ), x(j, s) 7→
∑
j,s

nsbs∗(a
∗
sxj · b∗sx(j, s)).

A similar proof as above yields the identity j(Σ, T )i(Σ, T ) = idM(T ). 2

An induction theorem for a Mackey functor consists in the determination
of a projective induction system. The significance of (??) is that a projective
induction system for A is also a projective induction system for any A-module.
Since A is a module over itself, a projective system for A is also an injective
system for A.

We remark that the image of p(Σ) in A(P ) is always an ideal. This is a general
property of Green functors (see ??). Therefore p(Σ) is surjective if and only if 1
is in the image of p(Σ). If this is the case, then a finite subfamily of Σ suffices.
Therefore, if A has a projective system, then also a finite one.

It is not really necessary that the category has a point. Let P be any object of
C. We can consider the category C/P of objects over P . This inherits an induction
category IC/P from IC. More explicitly: An induction system for P consists in
a family of morphisms (p(Sj): Sj → P | j ∈ J). All that matters in the previous
proof is another morphism p(T ): T → P . Note that C/P now has a terminal
object idP .

The induction theorem (??) has a second part. In it we describe the kernel
of p(Σ) and the image of i(Σ). Let M be a A-module and Σ = (Sj | j ∈

11



J) a projective induction system for A. We write I(i, j) = I(Si, Sj). In a sum
over i, j, s we understand s ∈ I(i, j); similarly, in a sum over j, s. We have two
homomorphisms

p1, p2:
⊕
i,j,s

M(Zs)→
⊕
k∈J

M(Sk)

defined by
p1(x(i, j, s)) = (

∑
j,s

nsas∗x(i, j, s) | i ∈ J)

p2(x(i, j, s)) = (
∑
i,s

nsbs∗x(i, j, s) | j ∈ J).

Theorem 5.2 The sequence⊕
i,j,s

M(Zs) -
p2 − p1 ⊕

k

M(Sk) -
p(Σ)

M(P )→ 0

is exact.

Proof. We use (??) and the notation of its proof. We know already that p = p(Σ)
is surjective. In this case a splitting is given by q(Σ, P ) = q, defined as q(z) =
(xj · p(Sj)

∗z | j ∈ J). We construct a homomorphism q1 which satisfies

(p2 − p1)q1 + qp = id .

This identity yields that the kernel of p(Σ) is contained in the image of p2, p1.
Since, by construction, p(p2−p1) = 0, we have exactness. We define q1 as the di-
rect sum

⊕
k q(Σ, Sk). Note that p2 is defined as

⊕
k p(Σ, Sk). Hence, by the proof

of (??), p2q1 = id. Thus it remains to verify p1q1 = qp. This is a computation as
in the proof of the previous theorem. 2

We also have a dual exact sequence. Its statement uses the following homo-
morphisms

i1, i2:
⊕
k

M(Sk)→
⊕
i,j,s

M(Zs)

defined as

i1(zk) = (nsbs(i, k)∗zk | i, s), i2(zi) = (nsas(i, k)∗zi | k, s).

Theorem 5.3 The sequence

0→M(P ) -
i(Σ) ⊕

k

M(Sk) -
i1 − i2 ⊕

i,j,s

M(Zs)

is exact.

Proof. We already know that i is injective and has a splitting j. Dually to the
previous proof we construct a homomorphism j1 which satisfies the identity ij +
j1(i1 − i2) = id. 2
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6 The n-universal Groups

We generalize the universal functor U to a functor in n variables.
Let S1, . . . , Sn be objects of C. We consider the category C/(S1, . . . , Sn) of

objects (aj: X → Sj) over the family (Sj). A morphism from (X, aj) to (Y, bj)
is a morphism f : X → Y such that bjf = aj for all j. Let U(S1, . . . , Sn) denote
the free abelian group on the isomorphism classes of objects in C/(S1, . . . , Sn).
Up to canonical isomorphism, this group is invariant under permutation of the
Sj. We make this construction into an n-variable functor in IC, given on objects
by (S1, . . . , Sn) 7→ U(S1, . . . , Sn). Fix the first variable. Suppose f : S → T in
C is given. Then f∗: U(S, Sj) → U(T, Sj) is given by composition with f in the
first component. We clearly have f∗g∗ = (fg)∗. In order to define f ∗: U(T, Sj)→
U(S, Sj) we consider the pullback

S

f

��

∑
s nsZs

fsoo

bs

��
T X

boo aj // Sj

and set
f ∗(b, aj) =

∑
s

ns(fs, ajbs).

The relation (fg)∗ = g∗f ∗ follows from the transitivity of the pullback. In general
we define (β|α)∗ = α∗β

∗. In order to see that this assignment defines a contravari-
ant R-functor on IC and that these functors in different variables commute, one
uses the transitivity of pullbacks.

The n-universal groups allow a characterization of pairings and n-linear maps.
Suppose P (S)⊗Q(S)→ R(S), x⊗ y → x · y is a pairing. For objects S1, S2, S3

in C we define a homomorphism

π(S1, S2, S3): U(S1, S2, S3)→ Hom(P (S1)⊗Q(S2), R(S3)),

which maps the basis element (y1, y2, y3) of U(S1, S2, S3) to

x1 ⊗ x2 7→ y3∗(y
∗
1x1 · y∗2x2).

(6.1) Proposition. The homomorphisms π(S1, S2, S3) form a natural trans-
formation of functors on IC in three variables.

Proof. In order to read the proposition correctly, we have to interprete the vari-
ance of the functor in an appropriate manner. When we use the bifunctor lan-
guage this means: Let f3: S3 → S ′

3 be a morphism in C. It induces f3∗ and f ∗
3 in

the third variable of U . Similarly, it induces homomorphisms when R is applied
and then the Hom-functor. In the first and second variable we have to compare

13



f∗ with the Hom-maps induced by f ∗. The compatibility of the π-morphisms
with the f∗ on the left follows directly from the definitions. The compatibility
with the f ∗ uses the pairing axioms and the double coset formula. 2

Conversely, we can characterize pairings by natural transformations. Let a
natural transformation π(S1, S2, S3) as above be given. Let

πS: P (S)⊗Q(S)→ R(S), x⊗ y 7→ x · y

denote the homomorphism which is the image of (id, id, id) ∈ U(S, S, S).

(6.2) Proposition. The πS form a pairing P ×Q→ R of Mackey functors.2

Via (??) and (??) we obtain a bijection between pairings and natural trans-
formations. We have a similar situation for n-linear maps P1 × · · · × Pn → L.
They correspond to natural transformations

U(S1, . . . , Sn+1)→ Hom(P1(S1)⊗ · · · ⊗ Pn(Sn), L(Sn+1)).

7 Tensor Products

In this section we make the category of Mackey functors into a symmetric tensor
category1. We begin with the construction of the box-product.

Suppose M1, . . . ,Mn are Mackey functors. We consider U(S1, . . . , Sn, T ) as a
covariant functor in the Sj by using the self duality of IC. We form the tensor
product N of this covariant functor over (IC)n with the contravariant functor
(Sj) 7→ M(S1) ⊗ · · · ⊗M(Sn). This is, by construction, a Mackey functor. We
show that it gives the universal n-linear map.

Let M1 × · · · ×Mn → L be an n-linear map between Mackey functors. Note
that N(T ) can be defined as a quotient of

Ñ(T ) =
⊕
(Sj)

U(Sj, T )⊗M1(S1)⊗ · · · ⊗Mn(Sn).

Let (aj, b) ∈ U(Sj, Z) denote a basis element. We map (aj, b)⊗ x1 ⊗ · · · ⊗ xn to
b∗(a

∗
1x1 · . . . · a∗nxn) ∈ L(T ). Here the dots refer to the given n-linear morphism.

One verifies

(7.1) Proposition. The linear maps Ñ(T ) → L(T ) factor over the quotient
N(T ) and the resulting maps N(T ) → L(T ) constitute a morphism of Mackey
functors. 2

We have seen in the previous section that the pairing M1×· · ·×Mn → L cor-
responds to a natural transformation. When we take the adjoint of π(S1, . . . , Sn)
we obtain a homomorphism

U(Sj, T )⊗M1(S1)⊗ · · · ⊗Mn(Sn)→ L(T ).

1Also called symmetric monoidal category.
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The set of these homomorphisms yields the homomorphisms Ñ(T ) → L(T )
above; and the fact that the π(Sj) form a natural transformation is equivalent
to the fact (??) that these homomorphisms factor over N(T ).

(7.2) Proposition. The canonical maps

M1(S)⊗ · · · ⊗Mn(S)→ U(S, S, . . . , S)⊗M1(S)⊗ · · · ⊗Mn(S)→ N(S)

which send x1⊗· · ·⊗xn to the class of (id, . . . , id)⊗x1⊗· · ·⊗xn form an n-linear
morphism. This is a universal such morphism. 2

The last proposition says that N is an n-fold box-product M12 · · ·2Mn. One
verifies that the two canonical maps of M(S)⊗N(S)⊗P (S) into ((M2N)2P )(S)
and (M2(N2P ))(S) are both universal trilinear maps. This gives the canonical
isomorphism (M2N)2P ∼= M2(N2P ) which satisfies the pentagon axiom for
tensor categories.

The functor U is a neutral element for this tensor product. This follows from
?? and ??.

The symmetric pairing in this tensor category is simply given by the canonical
morphism τ : M2N → N2M which makes the diagrams

M(S)⊗N(S)
τ(S) //

��

N(S)⊗M(S)

��
M2N

τ // N2M

with the twist maps τ(S)(x⊗ y) = y ⊗ x commutative. One verifies the axioms
of a braiding.

Problems

1. Here is a slightly more elementary construction of the tensor product (= box-
product). The tensor product of Mackey functors M and N is constructed as follows.
Let R(S, T ) denote the free R-module om the set of morphisms S → T in C. The group
(M2N)(T ) is a quotient of

⊕
S R(S, T )⊗M(S)⊗N(S) (tensor products always over

R): We factor out the submodule generated by the elements

gh⊗ h∗z ⊗ y − g ⊗ z ⊗ h∗y, g ∈ R(S, T ), h ∈ R(U, S), z ∈M(S), y ∈ N(U)

g ⊗ h∗z ⊗ y − gh⊗ z ⊗ h∗y, g ∈ R(U, T ), h ∈ R(S, U), z ∈M(S), y ∈ N(U).

This becomes a covariant functor in T from the covariant Hom-functor R(S, -). In
order to make it into a contravariant functor, let ϕ:Z → U be given. Suppose 〈ϕ, h 〉 =∑

t nt(αt, βt). Then ϕ∗ maps h⊗a⊗b ∈ R(S, T )⊗M(S)⊗N(S) to
∑

t ntαt⊗β∗
t a⊗β∗

t b.
It is shown with the transitivity relation (4) of the double coset decomposition that this
is compatible with the equivalence relation. The same rule is used to show functoriality
and the double coset formula, so that we have obtained a Mackey functor.
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8 Internal Hom-Functors

An internal Hom-functor for the category of Mackey functors in IC assigns to
each pair P, Q of Mackey functors another Mackey functor HOM(P, Q) which is
right adjoint to the box product

HomIC(N2P, Q) ∼= HomIC(N, HOM(P, Q)).

Given P, Q we let

Λ(T ) = NatS1,S2(U(S1, S2, T ), HomR(P (S1), Q(S2))

denote the R-module of natural transformations of Mackey functors in the vari-
ables S1, S2. These modules form a Mackey functor in the variable T . We call this
Mackey functor HOM(P, Q). In order to establish the adjunction (??) we take
another Mackey functor N and consider a natural transformations N → Λ. By
adjunction, the natural transformation consists of a family of homomorphisms

N(T )⊗ U(S1, S2, T )⊗ P (S1)→ Q(S2)

with properties which ensure a factorization over a natural transformation
N2P → Q. This assignment is the starting point for the construction of (??).
A formal consequence of (??) is the formal adjunction

HOM(N2P, Q) ∼= HOM(N, HOM(P, Q)).
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