SURFACES OVER NON–ALGEBRAICALLY CLOSED FIELDS

SERGEY RYBAKOV

Abstract. This talk is organized as follows. In the first part I remind some facts on classification of surfaces over arbitrary fields. And in the second part I illustrate this ideas on conic bundles and Del Pezzo surfaces of degree 4.

1. Classification of Surfaces over Arbitrary Fields

A smooth surface S over the field k is called minimal if every birational k–map $S \rightarrow S'$ to the smooth surface is an isomorphism. The following classification theorem of minimal surfaces over an arbitrary field is due to Iskovskikh[1] and Manin[2].

Theorem 1.1. Let S be a smooth proper surface defined over an arbitrary field k. There is a sequence of contractions $S \rightarrow S_1 \rightarrow \cdots \rightarrow S_n = S'$ such that S' and its Picard number $\rho(S')$ satisfy exactly one of the following conditions:

1. $K_{S'}$ is numerically effective (nef);
2. $\rho(S') = 2$ and S' is a conic bundle over a curve C;
3. $\rho(S') = 1$ and S' is a Del Pezzo surface, i.e., $-K_{S'}$ is ample.

Recall that for a smooth surface S over the field k the Neron–Severi group $\text{NS}(S)$ is equipped with the natural action of the Galois group $\text{Gal}(\bar{k}/k)$, preserving the intersection pairing and the canonical class K_S. In other words this action defines a representation ρ of $G = \text{Gal}(\bar{k}/k)$ in the group of automorphisms of $\text{NS}(S)$ preserving intersection pairing and K_S. Then $G = \text{Im} \rho$ is called the splitting group of S.

Denote by \bar{S} the surface $S \times_{\text{Spec} \ k} \text{Spec} \bar{k}$ over the algebraic closure of k.

Lemma 1.2. If K_S is nef, then \bar{S} is minimal.

We see that such surfaces have the same geometry of minimal models as over the closed field. However, for the classification over non-closed fields we can use arithmetic methods.

Definition 1.3. A variety Y is called a form of X over the field k if $\bar{Y} \cong \bar{X}$.

We have the following general result.

Theorem 1.4. The set of all forms of X is in 1–1 correspondence with the set $H^1(\text{Gal}(\bar{k}/k), \text{Aut}_k(X))$.

2. Conic Bundles and Del Pezzo Surfaces

We say that the conic bundle $\pi_S : S \rightarrow C$ is minimal if every birational map $S \rightarrow S'$ over C to the smooth surface is an isomorphism, this means that we cannot blow-down a line in a fiber of π_S. Conic bundle is minimal if and only if $\rho(S) = 2$, i.e., if $\text{NS}(S) \cong \mathbb{Z} \oplus \mathbb{Z}$.
Definition 2.1. Let X be a variety over the finite field \mathbb{F}_q and N_d be the number of points of degree 1 on $X \otimes \mathbb{F}_{q^d}$. The zeta–function of X is defined as

$$Z_X(t) = \exp(\sum_{d=1}^{\infty} \frac{N_dt^d}{d}).$$

Theorem 2.2. Let $\pi_S : S \to C$ be a minimal conic bundle and a_r be the number of degenerate fibers over points of degree r. Then

$$(2.1) \quad Z_S(t) = Z_C(t)Z_C(qt)\prod_{r} (1 + qt^r)^{-a_r}.$$

Every birational isomorphism of minimal conic bundles over C is a composition of elementary transformations. The zeta–function of the minimal conic bundle S is determined by the birational isomorphism class of S. And the latter is determined by the generic fiber of π_S. It is a form of \mathbb{P}^1 over the function field $K = k(C)$ of a curve C.

Let us recall some facts about Del Pezzo surfaces of degree less than 4. We use the notation of Theorem 2.5.

Lemma 2.3. For a form P of \mathbb{P}_K^1 there exists a smooth conic bundle $\pi : S \to C$ such that the fiber over the generic point of C is P.

If v is a closed point of C we have $\text{Br}(K_v) \cong \mathbb{Q}/\mathbb{Z}$ and an exact sequence:

$$(2.2) \quad 0 \longrightarrow \text{Br}(K) \xrightarrow{\gamma} \bigoplus_v \text{Br}(K_v) \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0.$$

We say that the degenerate fiber of π_S splits if we can blow-down the line in this fiber. To describe $\gamma(P)$ for the form P of \mathbb{P}_K^1 we need the following lemma.

Lemma 2.4. Let $\pi_S : S \to C$ be a conic bundle. The invariant of a corresponding form of \mathbb{P}_K^1 at a closed point v of C is 1/2 if and only if the fiber of π_S over v is degenerate and does not split.

From this follows

Theorem 2.5. We use the notation of Theorem 2.2. A conic bundle with zeta–function (2.1) exists if and only if there exists a set of points x_1, \ldots, x_s on the curve C, where s is even, such that exactly a_r points have degree r.

Such a set of points always exists for a large q.

Definition 2.6. The degree of Del Pezzo surface S is $\deg S = (K_S, K_S)$.

We can use previous results for the classification of Del Pezzo surfaces of degree 4. Let us recall some facts on Del Pezzo surfaces of degree less than 4.

- $\deg S = 9$: then $S = \mathbb{P}^2$;
- $\deg S = 8$: then $S = \mathbb{P}^1 \times \mathbb{P}^1$ or is a blow up of \mathbb{P}^2 in a point;
- $\deg S = 7$: then S is not minimal;
- $\deg S = 6$ or $\deg S = 5$ and $k = \mathbb{F}_q$: then S is not minimal;

It is known that if S is rational then

$$(2.3) \quad Z_S(t) = (1-t)^{-1}P(t)(1-q^2t)^{-1},$$

where $P(t) = \det(1 - qtF_r^*)$ characteristic polynomial of the weighted Frobenius action on $\text{NS}(S)$. In [M1, IV.9] Manin proved, using calculations of Swinnerton–Dyer, that there are 6 possibilities for a zeta–function of a minimal Del Pezzo surface of degree 4.

We have more complete result for surfaces of degree 4.
Theorem 2.7. Let S be a minimal Del Pezzo surface of degree 4. Then the zeta–function of S is one of the functions from Manin’s list.

Surfaces with such zeta–functions exist whenever $q > 3$.

Sketch of the proof. For a rational surface we have $\text{deg } X = (K_X, K_X) = 10 - \rho(X)$ (see [M1, IV.2.4]). Suppose S be a minimal conic bundle (i.e., $\text{Pic}(S) \cong \mathbb{Z} \oplus \mathbb{Z}$) with degenerate fibers over the points x_i. Since $\text{deg } S = 4$ we have $f = \rho(\tilde{S}) - 2 = \sum_{i=1}^{s} \text{deg } x_i = 4$. By Theorem 2.5 s is even. Obviously, we have only three possibilities for the numbers $\text{deg } x_i$:

1. $s = 4$, $\text{deg } x_i = 1$;
2. $s = 2$, $\text{deg } x_1 = 1$, $\text{deg } x_2 = 3$;
3. $s = 2$, $\text{deg } x_1 = \text{deg } x_2 = 2$.

From the formula (2.1) we get three possible zeta–functions.

At the same time, such surfaces do exist if $q > 3$. Indeed, let X be a conic bundle with the zeta–function. It can be shown that if X is not a Del Pezzo, then the elementary transformation at a k-point of X, not lying on an exceptional line (such a point exists if $q > 3$), gives us a Del Pezzo surface S. The zeta–function of S is $Z_X(t)$.

Let us consider the second case. Suppose S is not a conic bundle, i.e., $\text{Pic}(S) \cong \mathbb{Z}$. Let \tilde{S} be a blow up of S at a point of degree 1. Then \tilde{S} is a Del Pezzo of degree 3 and a minimal conic bundle of degree 3. Hence $f = 5$, and we again have three possibilities for $\text{deg } x_i$:

1. $s = 4$, $\text{deg } x_i = 1$ for $i = 1, 2, 3$ and $\text{deg } x_4 = 2$;
2. $s = 2$, $\text{deg } x_1 = 2$, $\text{deg } x_2 = 3$;
3. $s = 2$, $\text{deg } x_1 = 1$, $\text{deg } x_2 = 4$.

This gives us three other zeta–functions.

Let us construct surfaces with such zeta–functions. We start with a minimal conic bundle X of degree 3. In fact, it is a non–minimal Del Pezzo surface of degree 3. After the contraction of an exceptional line we get a Del Pezzo surface S of degree 4. Since $\rho(X) = 2$, we see that $\rho(S) = 1$ and S is minimal. This completes the proof.

References

E-mail address: rybakov@mccme.ru