Mathematisches InstitutGeorg-August-UniversitätGöttingen |

"Geometric invariant theory Conference", June 2-6, 2008 |

*Speakers include:*

**J.D. Alper**, (Stanford University):*A stack-theoretic approach to invariant theory***C. Böhning**, (Univesity of Göttingen):*The rationality problem for moduli spaces of plane curves***F. Catanese**, (Bayreuth University):*A remarkable moduli space of vector bundles related to cubic surfaces***I. Dolgachev**, (University of Michigan, Ann Arbor):*Moduli of configurations of points in the product of projective spaces: projective geometry, rationality and Cremona action***B. Doran**, (IAS Princeton):*Non-reductive actions and some applications***O. Garcia-Prada**, (CSIC, Madrid):*G-Higgs bundles on Riemann surfaces***G. van der Geer**, (University of Amsterdam):*Cohomology of local systems on the moduli of curves and abelian varieties of low genus***B. Hassett**, (Rice University):*TBA***J. Hausen**, (University of Tübingen):*Cox rings and GIT***Y. Hu**, (University of Arizona):*Equations and desingularizations of moduli of high genus stable maps***P. Katsylo**, (Independent University, Moscow):*Invariant theoretical approach to differential characteristic classes***A. King**, (University of Bath):*Moduli of sheaves from moduli of Kronecker modules***I. Losev**, (Moscow State University):*Uniqueness properties for affine spherical varieties***S. Mukai**, (RIMS, Kyoto):*Invariants and moduli***V. Popov**, (Steklov Institute, Moscow):*Describing the Hilbert cone of unstable points***S. Ramanan**, (Tate Institute):*Higgs pairs - a survey***I. Sols**, (UC, Madrid):*Stable principal bundles***B. Sturmfels**, (University of California, Berkeley):*Sagbi bases for Cox-Nagata rings***J. Tevelev**, (University of Massachusetts, Amherst):*Chow, moduli-theoretic, and tropical quotients of Grassmannians***A. Vistoli**, (Scuola Normale, Pisa):*On moduli of trigonal curves***V. Zhgoon**, (Moscow State University):*Variation of Mumford's quotients for the maximal torus action on a flag variety*