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1. INTRODUCTION

1.1. Statement of the problem and main results. In this paper we characterise solvable groups in
the class of finite groups by identities in two variables. The starting point for this research is the following
classical fact: the class of finite nilpotent groups is characterised by Engel identities. To be more precise,
Zorn’s theorem [Zo], [H, Satz I11.6.3] says that a finite group G is nilpotent if and only if it satisfies one

of the identities e, (x,y) = [y, z,x,...,2] = 1 (here [y, 2] = yxy~ ™!, [y, z, 2] = [[y, 2], 2], etc.).

Our goal is to obtain a similar characterisation of solvable groups in the class of finite groups. We say
that a sequence of words ui,...,un,... is correct if up = 1 in a group G implies u,, = 1 in a group G
for all m > k. We have found an explicit correct sequence of words ui(x,y),...,u,(z,y),... such that a
group G is solvable if and only if for some n the word w,, is an identity in G.

B. Plotkin suggested some Engel-like identities which could characterise finite solvable groups (see
[PPT], [GKNP]). In the present paper we establish B. Plotkin’s conjecture (in a slightly modified form).

Define
(1.1) ui(z,y) == o %y o, and inductively Uni1(2,y) = [Tun(z,y) 2™, yun(z,y)y ]
Note that sequence (1.1) is correct.

Our main result is

Theorem 1.1. A finite group G is solvable if and only if for some n the identity u,(xz,y) = 1 holds in
G.

Note two obvious properties of the initial word w = =2y~ a: (1) if a group G satisfies the identity
w = 1, then G = {1}; (2) the words w and z generate the free group F' = (x,y). Thus w can also be
used as the initial term of a sequence characterising finite nilpotent groups, see Proposition 4.1. We shall
discuss the choice of the initial word below. We conjecture after long computer experiments that Theorem
1.1 holds for any sequence formed like in (1.1) from any initial word not of the form w = (z~'y)* (k € N).

Our results can be viewed as a natural development of the classical Thompson—Flavell theorem ([Th],
[F1]), stating that if G is a finite group in which every two elements generate a solvable subgroup, then G
is solvable. Of course, Theorem 1.1 immediately implies this theorem (see Corollary 4.16 for an analogous
statement in the pro-finite setting). As mentioned in [BW], the Thompson—Flavell theorem, together with
[Br, Satz 2.12], implies that finite solvable groups can be characterised by a countable set of two-variable
identities. (This fact also follows from Lemma 16.1 and Theorem 16.21 from [Ne] saying that an n-
generator group G belongs to a variety V if and only if all n-variable identities from V are fulfilled in G.)
However, this does not provide explicit two-variable identities for finite solvable groups. Furthermore, in
the above cited paper, R. Brandl and J. S. Wilson construct a countable set of words w, (z,y) with the
property that a finite group G is solvable if and only if for almost all n the identity w,, (x,y) = 1 holds in
G. Since in their construction there is no easily described relationship between terms of wy,(z,y), they
raise the question whether one can characterise finite solvable groups by sequences of identities fitting
into a simple recursive definition.

Recently A. Lubotzky proved that for any integer d > 2 the free pro-solvable group Fd(S ) can be defined
by a single pro-finite relation [Lu, Prop. 3.4]. Using this proposition and Thompson’s theorem, one can
derive the existence of a needed sequence of identities characterising finite solvable groups (Lubotzky’s
result does not give, however, any candidate for such a sequence).

The sequence constructed in our Theorem 1.1 answers the question of Brandl-Wilson and fits very
well into a pro-finite setting (see Subsection 4.2).

One can mention here some more cases where certain interesting classes of finite groups were charac-
terised by two-variable commutator identities [Br], [BP], [BN], [Gu], [GH], [Nil], [Ni2]; see [GKNP] or
the above cited papers for more details.
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Although Theorem 1.1 is a purely group-theoretic result, its proof involves surprisingly diverse methods
of algebraic geometry, arithmetic geometry, group thery, and computer algebra (note, however, a paper
of Bombieri [Bo] which served for us as an inspiring example of such an approach). We want to emphasise
a special role played by problem oriented software (particularly, the packages SINGULAR and MAGMA):
not only proofs but even the precise statements of our results would hardly have been found without
extensive computer experiments.

Clearly in every solvable group the identities u,(z,y) = 1 are satisfied from a certain n € N onward.
We shall deduce the non-trivial “if” part of the theorem from the following

Theorem 1.2. Let G be one of the following groups: (1) G = PSL(2,F,) where ¢ > 4 (¢ =p", p a
prime), (2) G =5z(2"), n € N, n > 3 and odd, (3) G=PSL(3,F3). Then there are z,y € G such
that uy (z,y) # 1 and ui(z,y) = ua(z,y).

Here PSL(n,F,) denotes the projective special linear group of degree n over F,. For ¢ = 2™ we denote
by Sz(q) the Suzuki group (the twisted form of ?Bs, see [HB, X1.3]).

Let us show that Theorem 1.2 implies Theorem 1.1.

Assume that Theorem 1.2 holds, and suppose that there exists a non-solvable finite group in which the
identity u,, = 1 holds. Denote by G a minimal counterexample, that is, a finite non-solvable group of the
smallest order with identity w,, = 1. Such a G must be simple. Indeed, if H is a proper normal subgroup
of G, then both H and G/H are solvable (because any identity remains true in the subgroups and the
quotients). But the list of groups in Theorem 1.2 contains Thompson’s list of finite simple groups all of
whose subgroups are solvable [Th], hence G is one of the groups (1)—(3). Since sequence (1.1) is correct,
the assumption uq(z,y) = ue(x,y) implies that us(z,y) = us(z,y) = .... From u; # 1 it follows that
the identity u,, = 1 does not hold in G, contradiction.

Theorem 1.2 admits a generalisation which can easily be deduced from the classification of finite simple
groups.

Corollary 1.3. Let G be a finite non-abelian simple group. Then there are x, y € G such that ui(x,y) # 1
and uy(z,y) = ua(z,y).

For small groups from the above list it is an easy computer exercise to verify Theorem 1.2. There are
for example altogether 44928 suitable pairs z, y in the group PSL(3,F3); here is one of them:

00 1 2 0 2
z=l0 10|, y=|011
101 2 1 1

The general idea of our proof can be roughly described as follows. For a group G in the list of
Theorem 1.2, using its standard matrix representation over Iy, we regard the entries of the matrices
corresponding to x and y in this representation as variables, and thus interpret solutions of the equation
ui(z,y) = ua(z,y) as Fg-rational points of an algebraic variety. Lang—Weil type estimates [LW] for the
number of rational points on a variety defined over a finite field guarantee in appropriate circumstances
the existence of such points for big q. Small values of g are checked case by case. Of course we are faced
here with the extra difficulty of having to ensure that uj(z,y) # 1 holds. This is achieved by taking the
x, y from appropriate Zariski-closed subsets only. In the next two subsections we discuss more details.

1.2. The case G = PSL(2,F,). We shall explain here a more general setup which will also shed some
light on the somewhat peculiar choice of the word u; in (1.1).

Let w be a word in x, ™!, y, y~'. Let G be a group and , y € G. Define

uf (w,y) :==w,  and inductively  uy, (w,y) = [wuy (@, 9) 27 yup (@,y)y ]
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Let R := Zl[t, z1, 22, 23, 24] be the polynomial ring over Z in five variables. Consider further the two
following 2 x 2-matrices over R.

z(t)(i _(1)) y(zl,...,24)<2 Z)

Let a be the ideal of R generated by the determinant of y and by the 4 polynomials arising from the
matrix equation u¥(z,y) = u¥(x,y), and let V¥ C A® be the corresponding closed set of 5-dimensional
affine space. Let further ag be the ideal of R generated by the determinant of y and by the matrix entries
arising from the equation u¥(z,y) = 1, and let V{ C A® be the corresponding closed set. Our approach
aims at showing that V" \ V§’ has points over finite fields. We have therefore searched for words w
satisfying dim(V%) — dim(V{’) > 1 and also dim(V*) > 1. We have only found the following words with
this property:

1

1 1

(12) ety e,y ey, yaTly T yay Tt o yay e, @y Ty e
The extra freedom one might get by introducing variables for the entries of x does not lead to more
suitable results. Indeed, elements of GL(2) act on the corresponding varieties by conjugation, and every

matrix of determinant 1 except £1 is conjugate (over any field) to a matrix with entries like in x(t).

For the last 5 words in (1.2) the corresponding closed sets V* have no absolutely irreducible components
outside V§’, and in fact the analogue of Theorem 1.2 does not hold for them. For the first word w =
272y~ 1z the closed set V¥ has 2 irreducible components. One of them is V¥, the second which we call
S has dimension 2 and is absolutely irreducible. The map ¢: S — A\ {0}, ¢(z,y) = 21, is a fibration
with curves of genus 8 as fibres. We now consider the fibre ¢ =1(1) and thus arrive to the matrices of the

form
t —1 1 b
(1 0)’ y(b,c)(c 1—|—bc>'

To give the precise form of this curve which is used in computations, we write the equation uy(z,y) =
us(x,y) in an equivalent form

x(t)

(1.3) clyr y T e? = ya 2y ey

On substituting z(t) instead of x and y(b, ¢) instead of y, we obtain a matrix equation giving rise to
the following

Definition 1.4. We denote by I C Z[b, ¢, t] be the ideal generated by the four polynomials arising after
equating the matrix entries in (1.3), and let C' be the corresponding algebraic set.

The following theorem will be proved in Section 2:

Theorem 1.5. For any prime p the reduction of C modulo p is an absolutely irreducible curve.

We now use the classical Hasse-~Weil bound (in a slightly modified form adapted for singular curves,
cf. [FJ, Th. 3.14], [AP], [LY]).

Lemma 1.6. Let D be an absolutely irreducible projective algebraic curve defined over a finite field Iy,
and let Ny = #D(F,) denote the number of its rational points. Then |Ny — (q + 1)| < 2pa~/q, where p,
stands for the arithmetic genus of D (in particular, if D is a plane curve of degree d, p, = (d—1)(d—2)/2).

In fact, we need an affine version of the lower estimate of Lemma 1.6 (cf. [FJ, Th. 4.9, Cor. 4.10])

based on the fact that an affine curve C' has at most deg(C) rational points less than the projective
closure C'.

Corollary 1.7. Let C C A™ be an absolutely irreducible affine curve defined over the finite field Fy and
C C P the projective closure. Then the number of [Fy-rational points of C is at least ¢ + 1 — 2pa\/q —d
where d is the degree and pq the arithmetic genus of C.
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To apply Lemma 1.6 (or Corollary 1.7) we have to compute the arithmetic genus of the curve C' (or
the degree of some plane projection of C) and to prove that the curve is absolutely irreducible (which is
the most technically difficult part of the proof, see Section 2 for more details). Computations give d = 10
and p, = 12. This implies that for ¢ > 593 there exist enough F,-rational points on C' to prove Theorem
1.2 in the case of the groups PSL(2).

Remark 1.8. Consider the initial word w = [z, y]. The ideal a corresponding to the variety V* contains
the polynomial (—tz +v — w)(v + w). Let V;* be the closed set defined by the ideal generated by a
and v + w. This variety has 5 components: one is two-dimensional and equals V{’, and 4 others are of
dimension 0; each of them decomposes into 4 absolutely irreducibles components over a splitting field of
the polynomial 524 + 2023 + 3622 + 322 + 16. Let V¥ be the closed set defined by the ideal generated by
a and —tz + v — w. This variety also has 5 components, all of dimension 1; one of them is contained in
Vy’ and each other decomposes into 3 absolutely irreducibles components over the splitting field of the
polynomial ¢? 4+t — 1. Since none of the components, except for the one corresponding to trivial solutions
of u; = ug, is absolutely irreducible, our method fails for the initial word w = [z,y]. In fact, the analogue
of Theorem 1.2 does not hold for this word.

1.3. The case G = Sz(q). To prove Theorem 1.2, the Suzuki groups G = Sz(q) (¢ = 2", n odd) provide
the most difficult case. This is due to the fact that although Sz(g) is contained in GL(4,F,), it is not
a Zariski-closed set. In fact the group Sz(q) is defined with the help of a field automorphism of F, (the
square root of the Frobenius), and hence the standard matrix representation for Sz(q) contains entries
depending on gq. We shall describe now how our problem can still be treated by methods of algebraic
geometry.

Let R :=TFsfa, b, ¢, d, ag, bo, co, dp] be the polynomial ring over Fy in eight variables. Let 7: R — R
be its endomorphism defined by 7(a) = ag, w(ag) = a?,...,7(d) := do, 7(do) := d*. Let F be the
algebraic closure of Fy and consider a, ..., dy as the coordinates of eight dimensional affine space A® over
F. The endomorhism 7 defines an algebraic bijection o : A® — A8, The square of « is the Frobenius
automorphism on A® (note that a similar operator appears in [DL, Section 11]). Let p € A® be a fixed
point of @™, then its coordinates are in Fon if n is odd and in Fy.,2 if n is even.

Consider further the two following matrices in GL(4, R):

aag+ab+by b a 1 ceg+cd+dy d ¢ 1

_ aayp + b apg 1 0 _ cco+d c 1 0

(1.4) T = a 1 0 0 ) Y= c 1 0 0
1 0 0 0 1 0 0 O

The matrices x, y also define maps from A® to GL(4,F). It can easily be checked that the matrices
corresponding to a fixed point of a™ (n odd and n > 3) lie in Sz(2").

Definition 1.9. Let a be the ideal of R generated by the 16 polynomials arising from the matrix equation
(1.3), where z and y are taken from (1.4), let o’ = a: a3c3, and let V (resp. V') denote the closed set in
A8 corresponding to a (resp. a’). Let U =V’ . S where S is defined by the equation cco = 0.

The varieties V' and U are needed to understand the geometric structure of V. In fact, V' is the
unique top dimensional component of V', and U is a smooth open subset of V’. The following theorem
will be proved in Section 3.

Theorem 1.10. (1) dim(V) = dim(V’) =2, (2)7(a) = a, w(a’) = a’.
We thus see that « defines an algebraic map a: V — V. Our task now becomes to show that o™ (n

odd and n > 3) has a non-zero fixed point on the surface V. Our basic tool is the Lefschetz trace formula
resulting from Deligne’s conjecture proved by Fujiwara [Fu]. To apply this formula, we replace V by U.

Theorem 1.11. U is a smooth, affine, absolutely irreducible surface invariant under c. We have b*(U) <
675 and b*(U) < 222,
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Here b'(U) = dim H! (U,Q,) stand for the f-adic Betti numbers of U. We use results of Adolphson—
Sperber [AS] and Ghorpade—Lachaud [GL] to get the above estimates.

Since U is non-singular, the ordinary and compact Betti numbers of U are related by Poincaré duality,
and we have bi(U) := dim H}(U,Q,) = b*~(U). Since U is affine, b*(U) = 0 for i > 2. Since U is
absolutely irreducible, b°(U) = 1 and the Frobenius acts on the one-dimensional vector space H® (U, Q)
as multiplication by 4. The operator a induces linear self-maps of all these cohomology groups. The
above properties of U imply that the Lefschetz trace formula holds in the form

4

#Fix(U,n) =D (1) tr(a” | H(U,Qy)),

i=0
where Fix(U, n) is the set of fixed points of o™ acting on U (n > 1 is an odd integer).
Note that a acts on H® (U, Q,) as multiplication by 2. (Indeed, if it were multiplication by (—2), for

a sufficiently big power of « the right-hand | side of the trace formula would be negative.) Hence o™ acts
as multiplication by 2". Thus tr(a™|H2(U,Q,)) = 2".

We infer from Deligne’s estimates for the eigenvalues of the endomorphism induced by a on étale
cohomology the following inequality:

|#Fix(U,n) — 2" < bL(U)2°"/* + b2 (U)2"/2

An easy estimate then shows that #Fix(U,n) # 0 for n > 48. The cases n < 48 are checked with the
help of MAGMA, and this finishes the proof of Theorem 1.2 (and hence Theorem 1.1). More details can
be found in Section 3.

Remark 1.12. As a by-product of these computations, we found the first terms of the zeta-function of
the operator a acting on the set U. This is a rational function defined by

Zy(a,T) := exp < Z #Fix(U,n) T") .

n

We have found that Zy(a,T') equals

(1—=2T)1-T)(1—-T?3(Q +T?)3(2T* 4+ 2T? + 1)(4T8 + 2T* + 1)(2T% + 2T + 1)(8TC + 4T° + T + 1)
(1—272)3

up to terms of order T332, Note that the absolute values of the zeros and poles of this rational function

are all equal to 1, 1/2, 1/ V2, 0r1 / V/2, as general theory predicts. This formula suggests heuristic values
VAU) =1, 3(U) =6, b2(U) = 43.

1.4. Analogues, problems, and generalisations. First, let us mention the following analogue of
Levi-van der Waerden’s problems for nilpotent groups (cf. [H, §3.6]):

Problem 1.13. Fix n € N and assume that a finite group G satisfies the identity w,(z,y) = 1. What
can be said about the solvability length of G?7

If n =1, then G = {1}. If n = 2, then G is nilpotent class at most 3.

Further on, Theorem 1.1 admits some natural analogues in Lie-algebraic and group-schematic settings
[GKNP]. In particular, the following analogue of the classical Engel theorem on nilpotent Lie algebras is
true.

Theorem 1.14. [GKNP]| Let L be a finite dimensional Lie algebra defined over an infinite field k of
characteristic different from 2, 3, 5. Define

(1.5) vr=[z,y], vnga = [[on, 2], [vn, 9] (0> 1).
Then L is solvable if and only if for some n one of the identities v, (x,y) =0 holds in L.
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(Here [, ] are Lie brackets.)

A much more challenging question is related to the infinite-dimensional case. Namely, the remarkable
Kostrikin—Zelmanov theorem on locally nilpotent Lie algebras [Kol, [Ze2], [Ze3] and Zelmanov’s theorem
[Zel] lead to the following

Problem 1.15. Suppose that L is a Lie algebra over a field k, the v,’s are defined by formulas (1.5),
and there is n such that the identity v, (z,y) = 0 holds in L. Is it true that L is locally solvable? If k is
of characteristic 0, is it true that L is solvable?

Of course, it would be of significant interest to consider similar questions for arbitrary groups.

We call G an Engel group if there is an integer n such that the Engel identity e, (z,y) = 1 holds in G.

We call G an unbounded Engel group if for every x,y € G there is an integer n = n(x,y) such that
en(z,y) = 1.

We introduce the following

Definition 1.16. We call G a quasi-Engel group if there is an integer n such that the identity u, (z,y) = 1
holds in G.

Definition 1.17. We call G an unbounded quasi-Engel group if for every x,y € G there is an integer
n = n(z,y) such that u,(z,y) = 1.

Problem 1.18. Is every Engel group locally nilpotent?

Problem 1.19. Is every quasi-Engel group locally solvable?

(A property is said to hold locally if it holds for all finitely generated subgroups.)

Problem 1.18 remains open for a long time, cf. [Plo3]. The answer in general is most likely negative,
however, some positive results are known [BM], [Gr], [Plol], [Plo2], [Wi], [WZ], etc. In the solvable case
the situation is even less clear. We dare to state the following

Conjecture 1.20. Every residually finite, quasi-Engel group is locally solvable.

(A group is said to be residually finite if the intersection of all its normal subgroups of finite index is
trivial.)

For pro-finite groups the situation looks more promising.
Theorem 1.21. [WZ, Th. 5] Every pro-finite, unbounded Engel group is locally nilpotent.

Conjecture 1.22. Every pro-finite, unbounded quasi-Engel group is locally solvable.

It is quite natural to consider restricted versions of Problems 1.18 and 1.19 as is considered for the
Burnside problem. Let E;, be the Engel variety defined by the identity e, = 1. Let F' = F},,, be the free
group with k generators in the variety F,. One can prove that the intersection of all co-nilpotent normal
subgroups H, in F is also co-nilpotent. Hence there exists a group ng . in E, such that every nilpotent
group G € E,, with k generators is a homomorphic image of FS, - This implies that all locally nilpotent
groups from F,, form a variety. In other words, the restricted Engel problem has a positive solution. The
situation with the restricted quasi-Engel problem is unclear.

Problem 1.23. Let F' = Fj},, be the free group with £ generators in the variety of all quasi-Engel
groups with fixed n. Is it true that the intersection of all co-solvable normal subgroups in F' = Fj, ,, is
also co-solvable?

Our main theorem can be reformulated in pro-finite terms.
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Theorem 1.24. Let F = F(x,y) denote the free group in two variables, and let F be its pro-finite
completion. Let vi,va,...,Um,... be any convergent subsequence of (1.1) with limit f from F. Then the
identity f =1 defines the pro-finite variety of pro-solvable groups.

(See Section 4.2 for more details.)
It would be of great interest to consider the restricted quasi-Engel problem for pro-finite groups.

Remark 1.25. There is no sense in generalising Conjecture 1.22 too far: from the Golod—Shafarevich
counterexamples one can deduce an example of an unbounded quasi-Engel group which is not locally
nilpotent (and hence not locally solvable). We thank B. Plotkin for this observation.

Consider an interesting particular case of linear groups.

Corollary 1.26. Suppose that G C GL(n, K) where K is a field. Then G is solvable if and only if it is
quasi-Engel.

Proof. The “only if” part is obvious. The “if” part is an immediate consequence of Theorem 1.1 and
Platonov’s theorem [Pla] stating that every linear group over a field satisfying a non-trivial identity has
a solvable subgroup of finite index. (Of course, if K is of characteristic zero, the assertion follows from
the Tits alternative [Ti].) O

Here is one more application of Theorem 1.2: it generates short presentations of finite simple groups.
Let B be the group generated by xz, y with the single relation ui(z,y) = ua(z,y), that is B =
(x, y|u1 = u2). The solvable quotients of B are all cyclic, but B has at least all minimal simple groups
from Thompson’s list as quotients. We for example found that PSL(2,F5) = <x, ylup = ug, 23 =y? = 1>
and

Sz(8) = <x, y|lur = ug, =y = (xy2)5 = (acfly*lacyQ)Q = 1>.
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Notation. Because of extensive use of the SINGULAR package our notation sometimes differs from the
standard one: say, in the output of computer sessions, powers like a'? are denoted as a12 . We refer
the reader to [GP3], [GP4], [GPS] for definitions of SINGULAR commands and their usage, and to [Bul,
[GP1]-[GP3] for details on Grobner bases.

All other notations are more or less standard.

Rings and fields: All rings are assumed commutative with 1; Z, Q, IF; denote the ring of integers, the

field of rational numbers, the field of ¢ elements, respectively. k denotes a (fixed) algebraic closure of a
field k.
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Ideals and varieties: If I is an ideal in R and i: R — S is a ring homomorphism, IS stands for the
image of I under i. The ideal generated by fi,... fx is denoted (f1,..., fx).

For f € R we denote I : f° =J°2, I : f*. If R is noetherian, the chain of ideals I : f CT: f2C ...

n=1
stabilises, and we have I : f* =T : f™ for some n.

A" and P" denote affine and projective spaces. C denotes the projective closure of an affine set
C C A", and I, stands for the homogenisation of an ideal I. V(J) denotes the affine variety defined of
the ideal J. If V(J) C A", we denote D(J) = A" \ V(J). We shorten V({f1,..., fx)) to V(f1,..., fx),
and D({f1,..., fx)) to D(f1,..., fr). We denote by V (k) the set of rational points of a k-variety V.

x(V') denotes the Euler characteristic of a variety V.

If D is a projective curve (maybe singular), p,(D) is the arithmetic genus of D, and g(D) denotes the
genus of the normalisation of D.

All other notations will be explained when needed.

2. THE DETAILS OF THE PSL(2) CASE

2.1. Proof of the main result. Our goal is to prove Theorem 1.5 and to compute the arithmetic genus
of C'. This will lead us to the following

Proposition 2.1. If ¢ = p* for a prime p and q # 2,3, then there are x,y in PSL(2,F,) with y # v~
and uy(z,y) = ua(z,y).

Note that for w = x 72y~ 1z, the equation u;(z,y) = ua(z,y) has a non-trivial solution if and only if
it has a solution with y # z~1.

The proof will use some explicit computations with the following matrices. Let R be a commutative
ring with identity. Recall that we defined

t —1 1 b
=1 3 o=} ), esen
for t,b,c € R.

Remark 2.2.

(1) We have

(0 1 . (l4+bc —b
st = (0 )) o= (ME
for t, b, c.

(2) For any t,b,c € R we have y(b,c) # x(t)~!, even for the images of x(t) and y(b, c¢) in PSL(2, R).

The equation u; = ug is equivalent to z ™ lyz "ty 'z?

and write

=y 2y lay™ we put © = x(t), y = y(b,¢),

ni(t,b,c) mna(t,b, c)) _

1 -1, -1,2 -2, -1 -1 =
Ty Yy yr 'y xy (n3 (lf7 b, C) Uz (t7 ba C)

Let I = (n1,n9,ns,ng) C Z[b, ¢, t] be the ideal generated by the entries of the matrix.

Using SINGULAR we can obtain I as follows:!

LA file with all SINGULAR computations can be found at http://www.mathematik.uni-kl.de/ pfister/SolubleGroups.
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LIB"1linalg.lib"; option(redSB);
ring R = 0, (c,b,t),(c,1p);
matrix X[2][2] = t, -1,

1, O;
matrix Y[2][2] = 1, b,
c, 1+bc;
matrix iX = inverse(X); matrix iY = inverse(Y);

matrix M=iX*Y*iX*iY*X*xX-Y*iX*iX*iY*X*iY; ideal I=flatten(M); I;
I[1]1=c2b3t2+c2b2t3-c2b2t2+c2b2t+c2b2-c2bt3+2c2bt2+c2bt-c2t2+c2t+c2-cb3t
+cb2t2+cb2t+cbt3-cbt2+cbt+2cb-ct3+ct2+2ct+c-b2t+bt+1
I[2]=c2b2t+c2bt2+c2t-cb3t2-cb2t3-cb2t-cb2-2cbt2+cbt+ct2-ct-c+b3t-bt-b-1
I[3]1=c3b3t2+c3b2t3+c3b2t+2c3bt2+c3t-c2b3t-c2b2t3+2c2b2t2+c2b2t-c2bt4
+2c2bt3+c2bt2+c2bt-c2t3+2c2t2+c2t+2cb2t2-2¢cb2t-cb2+cbt2+cbt+cb-ct4d
+ct3+3ct2-c-b2t+bt2-bt-b+1
I[4]=-c2b3t2-c2b2t3+c2b2t2-c2b2t+c2bt3-2c2bt2+c2t2-c2t+cb3t-cb2t2-2cb2t
-cbt3-cbt+ct3-ct2-2ct+b2t+b2-bt-b-t+1

Denote by C the F4-variety defined by the ideal IF[b, c, t].
To prove Proposition 2.1, it is enough to prove

Proposition 2.3. Let q be as in Proposition 2.1, then the set C(Fy) of rational points of C' is not empty.

The proof is based on the Hasse-Weil estimate (see Corollary 1.7).

Note that the Hilbert function of C, H(t) = dt — pg + 1, can be computed from the homogeneous
ideal I of C, hence we can compute d and p, without any knowledge about the singularities of C'. The

ideal Ij, can be computed by homogenising the elements of a Grébner basis of I with respect to a degree
ordering (cf. [GP3]).

In the following let ¢ = p* be an arbitrary, fixed prime power and L the algebraic closure of F,. To
apply Corollary 1.7, we have to prove

Proposition 2.4. IL[b,c,t] is a prime ideal.

We start with the following

Lemma 2.5. The following polynomials form a Grobner basis of IL[c,b,t] with respect to the lexico-
graphical ordering ¢ > b > t,

J[1]=(£2) *¥bd+ (-t4+2t3) *b3+ (-t5+3t4-2t3+2t+1) *b2+ (£t 5-4t4+3t3+2t2) *b
+(t4-4t3+2t2+4t+1)

J[2]=(£3-2t2-t) *c+(t2) *b3+(-t4+2t3) *b2+ (-t5+3t4-2t3+2t+1) *b+ (£t5-4t4+3t3+2t2)

J[3]=(t)*cb+(-t2+2t+1)

J[4]=cb2+(~t2+2t+1) *c+ (-t ) *b3+ (£t3-2t2) *b2+ (£t4-3t3+2t2-t) *b+ (-t4+4t3-3t2-2t)

J[5]=(t) *c2-cb+(t) *c+(-t2) *b3+ (t4-2t3+t) *b2+ (t5-3t4+t3+2t2-2t-1) *b
+(-t5+3t4-4t2+t)

Proof. The Grobner basis can be computed in SINGULAR as follows (in characteristic 0):
ideal J=std(I);

Instead of relying on the SINGULAR computation, we can verify “by hand” that J is a Grobner basis
for each ¢. Indeed, given some intermediate data obtained with the help of a computer, the truth of the
lemma can be verified without computer. We first show that I and J generate the same ideal.
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matrix M=1ift(I,J); M;

M[1,1]1=b2t4+2bt3-t4-t3+3t2+2t

M[1,2]=bt4-t4+2t3+t2+t

M[1,3]=t

M[1,4]=-bt3+t3-2t2-t
M[1,5]=-cb2t3-cbt4-ct3+ct+b2t2-btd-bt+t6-t5-t4+t3-2t2-t
M[2,1]=-cbt5+cbt4+2cbt3-cbt2-cbt-ct4+ct2+ct-bt3+bt-t5+t4+2t3-2t2-2t
M[2,2]=cbt4-cbt2-cbt+ct2+ct+t4-t3-t2

M[2,3]=-cbt-t

M[2,4]=-cbt3+2cbt-ct-t3+t2+2t-1
M[2,5]=-cbt4+2cbt2-cbt+ct5-2ct4+ct3+ct2-3ct-bt+t5-3t4+t3+3t2-3t+1
M[3,1]=bt4-bt3-2bt2+bt+b+t3-t-1

M[3,2]=-bt3+bt+b-t-1

M[3,3]=b

M[3,4]=bt2-2b+1

M[3,5]=bt5-2bt4+bt3+2bt2-3bt+b-t5+2t4-2t2+3t
M[4,1]=cbt4-cbt3-2cbt2+cbt+cb+ct3-ct-c+b2t4+bt5-bt4+2bt2+bt+t4-2t3+3t+2
M[4,2]=-cbt3+cbt+cb-ct-c+bt2+bt-t4+t3+t2+t+1

M[4,3]=cb+bt+t+1

M[4,4]=cbt2-2cb+c-2bt+t3-t2-t-2
M[4,5]=-cb2t3+cbt5-3cbt4+cbt3+2cbt2-4cbt+cb-ct3-ct2+2ct+c+b2t2-bt2+t5-t4-3t+1

This implies that over Z and, hence, over each F; the k-th generator of J satisfies

JR] = MK -I[0], k=1,...,5.

/=1
matrix N= 1ift(J,I); N;
N[1,1]=-cb+c-1 N[1,2]=b
N[1,3]=-c2b-1 N[1,4]=cb-c+b+t
N[2,1]=cb2-cb+b-1 N[2,2]=-b2+1
N[2,3]=c2b2+c+b-1 N[2,4]=-cb2+cb-b2-bt+t-1
N[3,1]=cb2t+cbt+2cb+bt+t+2 N[3,2]=cb+ct-b2t-2bt-2b-t-1
N[3,3]=c2b2t+2c2bt+2c2b+2c2t-cb2+ct-c+bt-b+t+2
N[3,4]=-cb2t-cbt-2cb+c+b2-bt-2b-3t+1 N[4,1]=c
N[4,2]= -1 N[4,3]=0
N[4,4]1=0 N[5,1]=-1
N[5,2]=1 N[5,3]=c-1

N[5,4]1=t-1
In the same way this implies that

I7k] :iN[ﬂ,k]-J[E], k=1,....4.

=1
We proved that the polynomials J[1],..., J[5] generate the ideal I.
To show that J[1],...,J[5] is a Grobner basis, we use Buchberger’s criterion (cf. [GP3], Theorem
1.7.3). To see this for any ¢, we can use the same trick as above. Let s = spoly(J[i], J[j]), ¢ < j, be the
s-polynomial of J[i] and J[j]. We have to show that the normal form of s with respect to J[1],..., J[5] is

0. We apply 1ift(s,J); in SINGULAR and use the result to check by hand that s is a linear combination
of J[1],...,J[5] in all characteristics. As this is similar to above, we dispense with the output. O
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Lemma 2.6. Let
fi =20 — 3t — 2)b® + (=15 + 3t* — 26 + 2t + 1)D2 +£2(t2 — 2t — 1)(t — 2)b+ (2 — 2t — 1)?
fo =t(t? — 2t — 1)+ 120% + (—t* + 263)b% + (—t° + 3t* — 263 + 2t + 1)b + (¢° — 4t* + 33 + 21?)
h=t(t* —2t —1).

Then the following holds for any prime power q.

(1) {f1, fo} is a Grébner basis of IL(t)[b, c|] with respect to the lexicographical ordering ¢ > b;
2) I:h=1I
(3) IL(t)[b,c) N L[t b,c] = (f1, f2) : h?> = 1.

Proof. Because J is a Grobner basis of I with respect to the lexicographical ordering ¢ > b > ¢, J is a
Grobner basis of IL(t)[b, ] with respect to the lexicographical ordering ¢ > b (cf. [GP3, Chapter 4.3)).
But J[1] = f1 and J[2] = f2 and, considered in IL(t)[b, c], the leading monomials of f; and f, generate
already the leading ideal of IL(¢)[b,c|. This shows (1).

(3) is a consequence of (2) because IL(t)[b,c] N L[t,b,c] = (f1, f2) : h*, see [GP3, Prop. 4.3.1], and
h2I C (f1, f2) that we shall see now.

M=1ift(ideal(J[1],J[2]),h"2xI); M;

M[1,1]=(-t5+2t4+t3) *cb2+ (-t6+3t5-2t4+3t2+t) *cb+(t6-4t5+2t4+4t3+t2) *c
+(-t3) *b2+(£3) *b+(t2)
M[1,2]=(-t4+2t3+t2) *cb+ (-t5+2t4+t3) *c+(t5-2t4) *b2+ (t6-3t5+2t4-t3-3t2-t) *b
+(-t6+4t5-3t4-2t3-t2)
M[1,3]=(-t5+2t4+t3) *c2b2+ (-t 6+2t5+2t3+t2) *c2b+ (-2t 5+4t4+2t3) *c2+(t4-t3-t2) *cb2
+(-t5+2t4) *cb+(-t6+2t5+t4-t2) *c+(-t3) *b2+ (t4-t3-t2) *b+(t2)
M[1,4]1=(t5-2t4-t3) *cb2+(t6-3t5+2t4-t3-t2) *cb+(-t6+4t5-3t4-2t3) *c+(t3+t2) *b2
+(-t3-t2) *b+ (-t 3+t2)
M[2,1]=(t5-2t4-t3) *cb3+ (t6-3t5+2t4-3t2-t) *cb2+ (-t6+4t5-2t4-4t3-t2) *cb
+(—t5+3t4-3t2-t) *c+(t3) ¥*b3+ (-t 3) *b2+ (-t 2) *b
M[2,2]=(t4-2t3-t2) *cb2+ (t5-2t4-t3) *cb+(t4-2t3-t2) *c+(-t5+2t4) *b3
+(-t6+3t5-2t4+t3+3t2+t) *b2+ (£t6-4t5+3t4+2t3+t2) *b+ (t5-4t4+2t3+4t2+t)
M[2,3]1=(£5-2t4-t3) *c2b3+(£6-2t5-2t3-t2) *c2b2+ (2t5-4t4-2t3) *c2b+ (t4-2t3-t2) *c2
+(—t4+t3+t2) *cb3+(£5-2t4) *cb2+ (t6-2t5-t4+t2) *cb+ (-t4+2t3+t2) *c
+(t£3) *b3+ (-t4+t3+t2) *b2+(-t2) *b
M[2,4]=(-t5+2t4+t3) *cb3+ (-t6+3t5-2t4+t3+t2) *cb2+ (t6-4t5+3t4+2t3) *cb+ (t5-3t4+t3
+t2) *c+(-t3-t2) ¥*b3+ (t3+t2) *b2+ (t3-t2) *b

This implies
h%-n; = M[1,i]- fi + M[2,i]- fo, i=1,...,4.

To prove (2) we can use the following SINGULAR commands to see that [ : h C I.

poly h=t*(t2-2t-1);
reduce (quotient (I,h),std(I));
_[11=0 _[21=0 _[3]=0 _[41=0

If we want to check this by hand, we can use the following method to compute the quotient (cf. [GP3,
2.8.5)):

If U = {[g1,0],-..,[gn,0], [h,1]) is a submodule of the free module Llc,b,t]> and [0, hq],..., [0, h,] is the
part of the Grobner basis of U (with respect to the ordering (¢, >) giving priority to the components (cf.
[GP3, 2.3])), having the first component zero, then {(g1,...,gn) : h = (h1,...,hy).
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module N=[J[1],0],[J[2],0],[J[3],0]1,[J[4],0]1,[J(51,0],[h,1];
module Ni=std(N); Ni;
N1[1]1=[0,b4t2-b3t4+2b3t3-b2t5+3b2t4-2b2t3+2b2t+b2+bt5-4bt4+3bt3+2bt2+t4
-4t3+2t2+4t+1]
N1[2]=[0,ct3-2ct2-ct+b3t2-b2t4+2b2t3-bt5+3bt4-2bt3+2bt+b+t5-4t4+3t3+2t2]
N1[3]=[0,cbt-t2+2t+1]
N1[4]1=[0,cb2-ct2+2ct+c-b3t+b2t3-2b2t2+bt4-3bt3+2bt2-bt-t4+4t3-3t2-2t]
N1[5]1=[0,c2t-cb+ct-b3t2+b2t4-2b2t3+b2t+bt5-3bt4+bt3+2bt2-2bt-b-t5+3t4-4t2+t]
N1[6]=[t2-2t-1,-cb+t-2]
N1[7]1=[b3-b2-bt+2b,cb-4ct2+10ct-c+b5t-bdt-b3t5+3b3t4-4b3t2-4b3t+4b3-b2t6
+5b2t5-6b2t4+b2t3-3b2t2+4b2t-6b2+bt6-6bt5+14bt4-13bt3+4bt2-7bt-b+t5
-10t4+27t3-17t2-8t-4]
N1[8]=[cb,-c2+2cb-ct2+2ct-b2+bt2-2bt+t3-3t2+4]
N1[9]=[c2+c+b2-b-t+2,c3b+c2b+4c2-5cb+ct2-3ct+5c+b4t-b3t3+b3t2-b3t+2b2t3
—-4b2t2+b2t+4b2+bt5-bt4-6bt3+5bt2+5bt-5b-t5+2t4+3t3-4t2-2t-1]

We see that in the second component of N1[1],..., N1[5] we have exactly the Grobner basis J.

We have to check that N = N1 and that N1 is a Grobner basis. The last claim follows again by using
Buchberger’s criterion ([GP3], Theorem 1.7.3). To see that N = N1, we compute

M=1ift (N1,N); M;

M[1,1]=-c+b2t-b2-bt2+2bt+4b-t2+2t M[1,2]=-b-2t2+3t+3
M[1,3]=0 M[1,4]=b+t2-2t-1
M[1,5]=b+2t2-3t-4 M[1,61=0
M[2,1]=-b3t-b3-b2t2+b2t+bt2-2bt+8b+t-2 M[2,2]=-b2+b+8
M[2,3]=1 M[2,4]=-4
M[2,5]=b2-b-9 M[2,61=0
M[3,1]=-b2t-4b2-2bt+2b+t-2 M[3,2]=c-b2t-4b-t+1
M[3,3]=-2 M[3,4]=b2+bt-b+1
M[3,5]=-c2-c+b2t+3b+4 M[3,6]=1
M[4,1]=b3-b2+1 M[4,2]=b2-b
M[4,3]=0 M[4,4]=-2
M[4,5]=-b2+b M[4,6]=0
M[5,1]1=0 M[5,2]1=0
M[5,3]=1 M[5,4]=0
M[5,5]=-t-2 M[5,6]=0
M[6,1]=b4-b3t2-b3-b2t3+b2t2-b2t+b2+bt3-2bt2+t2-2t-1
M[6,2]=ct+b3-b2t2-b2-bt3+bt2-bt+b+t3-2t2 M[6,3]=-1
M[6,4]=-c+b2t+bt2-bt-t2+2t

M[6,5]=-b3+b2t2+b2+bt3-bt2-b-t3+t2+t M[6,6]=t
M[7,1]1=2bt+b M[7,2]=2t+1
M[7,3]=0 M[7,4]=-t
M[7,5]=-2t-1 M[7,6]=0
M[8,1]=0 M[8,2]=0
M[8,3]=t M[8,4]1=b
M[8,5]=-1 M[8,6]=0
M[9,1]=0 M[9,2]=0
M[9,3]1=0 M[9,4]1=0
M[9,5]=t M[9,61=0

This implies

N[k :zQ:M[E,k:]-Nl[E], k=1,....6.
=1
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M=1ift(N,N1);

M[1,1]1=0 M[1,2]1=0 M[1,3]1=0 M[1,4]1=0 M[1,5]1=0 M[1,6]1=0
M[1,7]1=0 M[1,8]=0 M[1,9]=0 M[2,1]=0 M[2,2]=0 M[2,3]=0
M[2,4]1=0 M[2,5]1=0 M[2,6]1=0 M[2,7]1=0 M[2,8]=0 M[2,9]1=0
M[3,1]1=-b2t3+2b2t2+b2t+t5-4t4+2t3+4t2+t M[3,2]=-bt3+2bt2+bt
M[3,3]=-t3+2t2+t M[3,4]1=0

M[3,5]1=0 M[3,6]=t2-2t-1

M[3,7]1=-b2t4+3b2t3-3b2t-b2+bt5-5bt4+7bt3+3bt2-12bt+b+2t6-11t5+16t4+2t3-10t2-3t

M[3,8]=bt2-2bt-b-2t2+5t

M[3,9]=b2t5-5b2t4+5b2t3+2b2t 2+2b2t+b2+2bt6-11bt5+18bt4-5bt3-7bt2+3bt-b+t7
-6t6+13t5-11t4-4t3+14t2-4t+2

M[4,1]=bt4-2bt3-bt2 M[4,2]=t4-2t3-t2
M[4,3]=0 M[4,4]=-t3+2t2+t
M[4,5]=0 M[4,6]=0

M[4,7]=-ct3+2ct2+ct+bt5-4bt4+2bt3+5bt2-bt-b+t5-4t4-2t3+14t2
M[4,8]=-t3+2t2+t
M[4,9]=-ct4+2ct3+2ct+c-b2t4+2b2t3+b2t2+2bt3-4bt2-2bt+t6-4t5+3t4+t3+5t+1

M[5,1]=0 M[5,2]=0 M[5,3]=0
M[5,4]1=0 M[5,5]=-t3+2t2+t
M[5,6]1=0

M[5,7]1=b2t2-2b2t-b2-t4+4t3-2t2-4t-1 M[5,8]=t2-2t-1

M[5,9]=-cbt2+2cbt+cb+b2t3-2b2t2-b2t-t5+4t4-3t3-4t2+5t
M[6,1]1=b4t2-b3t4+2b3t3-b2t5+3b2t4-2b2t3+2b2t+b2+bt5-4bt4+3bt3+2bt2+t4
-4t3+2t2+4t+1
M[6,2]=ct3-2ct2-ct+b3t2-b2t4+2b2t3-bt5+3bt4-2bt3+2bt+b+t5-4t4+3t3+2t2
M[6,3]=cbt-t2+2t+1
M[6,4]=cb2-ct2+2ct+c-b3t+b2t3-2b2t2+bt4-3bt3+2bt2-bt-t4+4t3-3t2-2t
M[6,5]=c2t-cb+ct-b3t2+b2t4-2b2t3+b2t+bt5-3bt4+bt3+2bt2-2bt-b-t5+3t4-4t2+t
M[6,6]=-cb+t-2
M[6,7]=cb-4ct2+10ct-c+b5t-bdt-b3t5+3b3t4-4b3t2-4b3t+4b3-b2t6+5b2t5-6b2t4+b2t3
-3b2t2+4b2t-6b2+bt6-6bt5+14bt4-13bt3+4bt2-7bt-b+t5-10t4+27t3-17t2-8t-4
M[6,8]=-c2+2cb-ct2+2ct-b2+bt2-2bt+t3-3t2+4
M[6,9]=c3b+c2b+4c2-5cb+ct2-3ct+5c+b4dt-b3t3+b3t2-b3t+2b2t3-4b2t2+b2t+4b2+bt5
-bt4-6bt3+5bt2+5bt-5b-t5+2t4+3t3-4t2-2t-1

This implies

6
Ni[k] =Y M[(,k]-N[(], k=1,....9,
=1
and we obtain finally N = N1.

13

O

We now continue the proof of Proposition 2.4. We have IL(t)[b,c]NL[b,c,t] = (f1, f2) : h? = IL[b, c, t].
Therefore, if IL[b, ¢, t] were reducible, then I L(t)[b, ¢] would be reducible too. We are going to prove that

this is not the case.

In L(t)[b, ¢] the polynomial f is linear in ¢. Since f; does not depend on ¢, we have L(t)[b,c|/I

L(t)[b]/{f1) and, hence, it suffices to prove that the polynomial f; is irreducible.
Set & = bt, and let p(x,t) = t*f1(%,t), then
pz,t) = ot —t2(t —2)2® + (=5 +3t* =263 4 2 + )2 + 3t — 2)(#* — 2t — D)z
+ 212 — 2t — 1)%.

~

To prove that f; € L[t, b] is irreducible, it suffices to prove that p € L[z, ] = L[t][x] is irreducible. We

first show that p has no linear and no quadratic factor with respect to x.
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First we prove that p has no linear factor, that is, that p(x) = 0 has no solution in L[t].

Assume that x(t) € L[t] is a zero of p(z) = 0. Then x(t) | t>(t* — 2t — 1)2. If the characteristic of L is
not 2, it is not difficult to see that x(¢) cannot contain the square of an irreducible factor of t2(t? —2t —1)2.
If the characteristic of L is 2, it is not possible that t? | z(t) or (¢t + 1) | z(¢). Moreover, it is easy to see
that the leading coefficient of x(t) is (—1)des(@(®)—1,

The following list gives the candidates for a zero of p(z) and the value of p(x).

If char(L) > 2:

x leading term of p(z)
-1 —t°
t —t6
t—1-+2 V2t0
t—1++2 V2t6
—t(t —1++2) —V/2t8
—t(t—1-+/2) V2t8
—t2+2t+1 —8
t(t?—2t—1) —tt,
If char(L) = 2:
e p(x)
1 5+ 13 4 ¢
t 5+ 15+ ¢4
t+1 5 4¢3
tt+1) tT+ 15
(t+1)2 | B+t7T+10 41+ 13 4 ¢2
tt+1)2 [t 4 + 48 17 5+t

This implies that p(x) has no linear factor with respect to « in L[z, t].
Now assume that p(z) = (22 + ax + b)(2? + gx + d), a,b,g,d € L[t].
This implies:

(1) bd = t2(t> —2t—1)2

(2) ad+bg = t3(t—-2)(t2-2t-1)
(3) d+ag+b = 543t —283+2t+1
(4) a+g —12(t — 2).

If t2|b then, because of (2), we obtain t?|a. (4) implies t?|g and (2) implies t3|a. (3) implies that
= 1+2t mod (t?) and (4) implies that g = 2t mod (t3). If char(L) # 2, we obtain d = —(t? — 2t — 1)

and b = —t2(t2 — 2t — 1), because (t? — 2t — 1)? = 1 + 4t mod (t?). If char(L) = 2, then t3|a and t3|g.
(2) implies that % - d + %b = (¢t + 1)®. This implies (¢ + 1)?|b and (¢ + 1)?|d. Therefore, we have in any
characteristic b = —t2(t> — 2t — 1) and d = —(t* — 2t — 1). (3) implies that ag = —t3(t — 2)?. This is a
contradiction to the fact that t3|a and t2|g.

We showed that t? { b. Similarly, we obtain that ¢?  d. This implies that t|b and t|d. If (t> — 2t —1)2b,
then (2) implies that t* — 2t — 1]a. Let d = d;t for a suitable d; € L, then (3) implies that t* — 2t — 1 |
—t5 + 3t* — 23 4+ 2t + 1 — dyt, that is, d; = —1. Then b = —t(t? — 2¢t — 1)2. Now (3) implies that
ag=—t*+ 42 + 4t +1=—(2 -2t - 1)(t + 1)2.

But t2 — 2t — 1]a and (4) implies that deg(a) = 3 and deg(g) = 1. This implies that ¢+ 1|a and t + 1]g,
which is a contradiction to (4).

Similarly, we obtain that (> —2t—1)? t d. This implies that b = bst(t* —2¢t —1) and d = -#(t* -2t — 1)
for a suitable b3 € L. (3) implies that deg(ag) = 5. Because of (4), we may assume that deg(a) = 3 and
deg(g) = 2. (4) implies that a = —t3+ terms of lower degree. (3) implies that g = t>+ terms of lower
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degree. (4) implies that a = —t3 + 2+ terms of lower degree. (2) implies that b3 = —1. (3) implies

that ag = —t° + 3t* — 4t + 1. Let a = t3 + 12 + a1t + ag for suitable a1,ag € L then, because of (4),

g =t?—ait —ap. (3) implies that a2 = —1. Now —t5 + 3t* — 4t + 1 = a - g implies that ag = 0, which

is a contradiction. This proves that p is irreducible, and hence the proposition is proved. O
We can now apply Corollary 1.7 to prove Proposition 2.3.

We compute the Hilbert polynomial H(t) of the projective curve corresponding to I, the homogeni-
sation of I. We obtain H(t) = 10t — 11. The corresponding SINGULAR session is:

ring S=0, (b,c,t,w),dp; ideal J=imap(R,J); ideal K=std(J); K;

K[1]=bct-t2+2t+1

K[2]=bt3-ct3+t4-b2t-c2t-2bt2+2ct2-3t3+bc+2t2-t
K[3]=b2c2-bt2+ct2-t3+b2+2bc+c2+2bt-2ct+2t2+2
K[4]=c2t3-ct4+c3t-2c2t2+3ct3-t4-bc2+bt2-2ct2+4t3-2bt+ct-3t2-b-2t

We now compute matrices to represent the generators of J in terms of the generators of K, and vice
versa, in order to see that in any characteristic K L[b, ¢, t,w] = JL[b, ¢, t, w]. Moreover, using Buchberger’s
criterion, it is not difficult to check that K is a Grébner basis of IL[b, ¢, t, w| in any characteristic.

1ift(J,K);

_[1,11=0 _[1,21=0 _[1,3]=t-1 _[1,4]=-1
_[2,1]=0 _[2,2]=-1 _[2,3]=-bt-t2+2b+3t-2 _[2,4]=b+c-1
_[3,1]1=1 _[3,2]=0 _[3,3]=-t+3 _[3,4]=1
_[4,1]1=0 _[4,2]=0 _[4,3]=-t3+bt+2t2+c _[4,4]=-t
_[5,11=0 _[5,2]=-1 _[5,3]=t-2 _[5,4]=c
lift(X,J);

_[1,1]=-bt3-bct+2bt2+b2-t2+2t+1 _[1,2]=-t3-ct+2t2+b

_[1,3]=1 _[1,4]=t2+c-2t _[1,5]=t3+ct-2t2-b _[2,1]=-b2t
_[2,2]=-bt _[2,3]=0 _[2,4]1=b _[2,5]=bt-1
_[3,11=0 _[3,2]1=0 _[3,3]1=0 _[3,4]1=0
_[3,51=0 _[4,11=0 _[4,2]1=0 _[4,31=0
_[4,41=0 _[4,5]1=0

We homogenise K with respect to w and obtain again a Grobner basis, cf. [GP3], with respect to
the lexicographical ordering. Since the leading ideal is independent of the characteristic, the Hilbert
polynomial is the same in any characteristic. We compute

K=homog(K,w); hilbPoly(K);

-11,10

Hence, the Hilbert polynomial is 10¢ — 11. From this we obtain the degree d = 10 and the arithmetic
genus p, = 12 of the projective closure. Using Corollary 1.7, we obtain:

Ng>q+1-24,/q—10.
This implies that C(IF,) is not empty if ¢ > 593. For small ¢, we give a list of points (Tables 1 and 2) to
prove that C(IF,) is not empty. Proposition 2.3 and, hence, 2.1 are proved.
Remark 2.7. Using the leading terms of J, we can even compute the Hilbert polynomial without
computer. Hence (once the matrices are computed by the 1ift command and the Grébner bases are

given) we can check everything by hand, since only simple (although tedious) manipulations are necessary.
Therefore, the PSL(2) case can be verified without computer.
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point in C(Fp) p | point in C(Fp) p | point in C(Fp) p | point in C(Fp)
(1,2,2) 113 | (0,37,52) 263 | (0,47, 154) 421 | (2,331,151)
(0,1,4) 127 | (0,10,112) 269 | (2,205,73) 431 | (0,100, 189)
11| (1,9,1) 131 | (1,14,22) 271 | (0, 64,97) 433 | (0,67,228)
13 | (1,1,8) 137 | (0,5,32) 277 | (4,21,7) 439 | (0,4,22)
17 | (0,7,7) 139 | (1,19,109) 281 | (0,98,150) 443 | (2,213,143)
19 | (3,2,10) 149 | (1,87,63) 283 | (1,188,250) 449 | (2,215, 286)
23 | (0,11,19) 151 | (1,99,108) 293 | (1,26,270) 457 | (0,63,378)
29 | (2,12,8) 157 | (1,22,62) 307 | (1,100, 10) 461 | (5,5,267)
31 | (1,18,26) 163 | (1,67,8) 311 | (2,56,162) 463 | (0,62,204)
37 | (1,25,22) 167 | (0,3,14) 313 | (0,45,194) 467 | (1,70,461)
41 | (1,4,19) 173 | (1,101, 119) 317 | (2,34, 146) 479 | (0,202, 293)
43 | (1,15,3) 179 | (1,11,71) 331 | (1,197,323) 487 | (0,9,92)
47 1 (0,2,8) 181 | (1,3,75) 337 | (0,138,312) 491 | (1,31,439)
53 | (2,16,12) 191 | (0,7,58) 347 | (1,252,267) 499 | (1,275, 40)
59 | (3,33,39) 193 | (0,45, 142) 349 | (2,314, 255) 503 | (0,12,158)
61 | (2,21,49) 197 | (1,18, 145) 353 | (0,142,187) 509 | (7,424, 256)
67 | (1,11,63) 199 | (0,67, 180) 359 | (0, 80,20) 521 | (0,219, 250)
71 | (0, 18,60) 211 | (1,51,92) 367 | (0,28,80) 523 | (3,8,369)
73 | (1,44, 49) 223 | (5,6,157) 373 | (1,82,336) 541 | (1,220, 80)
79 | (0,17,71) 227 | (1,118, 74) 379 | (2,9,197) 547 | (2,264,122)
83 | (1,54,39) 229 | (3,220,92) 383 | (0,149,138) 557 | (2,42,261)
89 | (0,19,26) 233 | (0,19, 149) 389 | (1,27,379) 563 | (1,317,485)
97 | (0,10, 15) 239 | (1,179,126) 397 | (3,271,169) 569 | (0,269, 369)
101 | (2,1,47) 241 | (0, 67,220) 401 | (0, 48, 349) 571 | (1,443,422)
103 | (0,23, 39) 251 | (3,15,112) 409 | (0,50,98) 577 | (2,169,514)
107 | (1,61,26) 257 | (3,97,135) 419 | (1,121,65) 587 | (1,45,229)
109 | (1,69,102) 593 | (1,240,5).
TABLE 1. ¢g=p=25,...,593
n | point in C(Fq) n | point in C(Fq)
2 (a,0,1) 2 (a,0,a)
3 (a,a?,a?) 3 (a,a3,al?)
4 (a3,a'?,a®) 4 (a, —1,a%)
5 (a3’a207a22) 5 (a27a107a2)_
6 (a97 a97 a54)
7 (a7 a627 a48)
8 (a’ a707 a200)
9| (a,a't,a'?).
q=2",n=2,...,9 q=3",n=2,...,5

TABLE 2. a denotes a generator of the multiplicative group Fy ~ {0}.

2.2. The geometric structure of C. In this subsection we study the singularities of the reduction of
the curve C' modulo primes. This will result in another proof of the main theorem in the PSL(2) case
(Proposition 2.1). We use the notations of Subsection 2.1 and consider the curve defined by the ideal I.
The difference to the proof in Subsection 2.1 is the proof of the absolute irreducibility of the polynomial
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f1 = J[1], which uses here the analysis of the singularities. Furthermore, the Hasse~Weil Theorem is
applied here to the normalisation of the plane curve defined by f1, while in Subsection 2.1 it was applied
to the curve defined by I and not to its projection defined by f;.

Lemma 2.8. With the notations of Lemma 2.6 we obtain, substituting c = (t> — 2t — 1)/tb,

bJ[2] (t,b, (12 —2t —1)/tb) = J[1]
J[3) (t,0,(t2 =2t —1)/tb) = 0
tbJ 4] (¢,b,(t* —2t —1)/tb) = —J[1]
th2J[5] (¢, b, (t* —2t —1)/tb) = (1—1tb)J[1].
Proof. This is an easy computation. O

Corollary 2.9. A point (t,b) of the plane curve defined by J[1] = 0 with tb # 0 defines a point
(t, b, (12 — 2t — 1)/tb) of the curve defined by the ideal I.

Proof. Just note that J[1],..., J[5] is a Grobner basis of I and use Lemma 2.8. O

Remark 2.10. In Subsection 2.1 we did not use this reduction to the case of a plane curve since this
allowed a verification without computer. We used the Hasse—Weil theorem involving the arithmetic genus
which avoids an analysis of the singularities. The arithmetic genus is 12 for the curve defined by I and 15
for its projection to the plane defined by f;. The analysis of singularities allows us to use the geometric
genus, which is 8. In principle, this does not make a big difference because we are using a computer for
small fields IF,, anyway. For genus 15, resp. 12, resp. 8, Hasse-Weil guarantees rational points if ¢ > 977,
resp. ¢ > 593, resp. ¢ > 277. Hence, the analysis of the singularities reduces the number of small fields
which have to be treated by computer. On the other hand, when analysing the singularities, we have the
disadvantage of treating the field Fggq007. That such a large prime will play a special role in the analysis
of singularities was unexpected for us.

We reduced the problem to find a point (¢,b) € F, on the plane curve V(f1) with ¢tb # 0. Note that
f1(0,b) =% +1 and fi(¢,0) = (¢t — 2t — 1)2. Hence there are at most four points on the curve with ¢ =0
or b = 0. We shall show that there are at least five points on such a curve. We did the calculations in
SINGULAR and MAGMA to work with independent computer algebra systems.

From now on, we denote P(t,b) = f1(¢,b).
We shall analyse the plane algebraic curve given by the polynomial P(t,b) over various (finite) fields.

We put C,C for this curve (over the complex numbers C) and its projective closure, respectively. We
use the coordinate system (¢ : b: z) in the projective plane. The projective curve C' is then given by the
homogeneous polynomial
P(t,b,z) = — b*t* — b0 4 022 + 20332 + 30212 + bt°z — 20%4322 — 4bt*2? + 301323 4 128
+ 2072t + 2bt2 2t — 4832 + 0220 4 2220 4+ 420 4 27
If p is a prime number, we put Cp,@, for these curves over Fp. The curves C, and Up are then defined
by the reductions of the polynomials P(t,b) and P(t,b, z) modulo p respectively.

We use the standard formula:

9(C) = (degree(C) — 1)2(degree(€) -2) B Z o

QeC(k)

where the local contributions of singular points ¢ are defined as dimy, (5@ /Oq; here Oq is the local ring
of @ and O, is the integral closure of Og in the function field of C.
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We also define
for a prime power g. The following tables contain the solution numbers A(L) for various finite fields L.

A(Fy) = 2 A(Fy) = 128  A(Fys) = 7880  A(Fs) = 190
A(F) = 6  A(Fy) = 218  A(Fya) = 16722  A(F) = 734
A(Fy) = 11 A(Fyp) = 551  A(Fs) = 0 A(Fy) = 2380
AFy:) = 10 A(Fy0) = 1026  A(Fp) = 14 A(Fs) = 6806
AFy) = 32 A(Fyn) = 2048  A(Fs3) = 36
AFgs) = 39  A(Fg2) = 4279  A(Fsz) = 78

TABLE 3. Number of points on C(F,), ¢ = 2" or 3"

The numbers contained in Table 3 and also those in Table 4 can be obtained in microseconds on a
computer. We have, in fact, used MAGMA and verified this with SINGULAR.

A(Fs) = 11  A(Fe) = 72  A(Fs) = 121  A(Fie9) = 167
A(F;) = A(Fgr) = 57  A(Fir) = 121 A(Fa) = 229
A(Fy) = A(F71) = 76  A(Fis9) = 134  A(Fa3) = 203
A(F3) = 16 A(Fz) = 78  A(F) = 140  A(Far) = 230
A7) = 19 A(Fg) = 89  A(F5) = 164  A(Fay) = 220
A(F) = 15  A(Fs) = 76  A(F57) = 161  A(Fazs) = 250
AFy3) = 9  A(Fs) = 82  A(Fgs) = 170 A(Fagg) = 272
A(Fy) = 45  A(Fe;) = 92 A(Figr) = 136  A(Fay) = 277
AF3) = 33  A(Fi1) = 98  A(Firs) = 167  A(Fasy) = 233
A(Fs7) = 36  A(Fyws) = 97  A(Fig) = 128  A(Fasr) = 271
A(F4y) = 61 A(Fwr) = 98  A(Fs) = 210  A(Fas) = 246
AF43) = 32 A(Fy) = 121 A(Fre1) = 233  A(Fage) = 305
AFyr) = 42 A(Fys) = 122 A(Fes) = 223 A(Fapy) = 240
A(Fs3) = 53  A(Fya7) 136 A(Fi97) = 201 A(Farr) = 263
A(Fs) = 36

TABLE 4. Number of points on C(F,), p prime

We add the information:
(%) A(F593) = 474, A(Fsga007) = 864867
which can also be obtained by a simple computer calculation.
We shall show:
Proposition 2.11. If ¢ = p* for a prime p and q # 2, 3 then A(F,) > 5.
Our theorems would be much easier to prove if a rational point on C' could be found. Unfortunately,
even an extensive computer search has not revealed such a point.

We proceed by our analysis of the curve C. Consider affine charts C* = D(2) N C,C?=D()NC,
and C3 = D(t) N C. The part at infinity V() N C is denoted by C°°. Putting a prime p as an index to
C stands then for the analogous construction over F,. We have:
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Lemma 2.12. The part at infinity C>°(C) consists evactly of the points (0:1:0), (1:0:0), (1:1:0).
Also Cp°(IFy) consists exactly of the points (0:1:0), (1:0:0), (1:1:0) for every prime p.

Proof. We find
P(t,b,0) = —b*t (b + 1)
and the statement follows. O

We shall later prove Proposition 2.11 by an application of a Hasse-Weil estimate for the number of
points on Cp,. To do this, we have to understand the singularities of C', and also prove the absolute
irreducibility as the prime p varies. The following contains a description of the singularities of C.

Lemma 2.13. The projective curve C has the 4 singular points
Qr=(w+1:0:1), Q2=(—w+1:0:1), Q3=(1:0:0), Q4 =(0:1:0)

where w = /2. The points Q1, Qa, Q3 are ordinary double points whereas Q4 is a singularity of type D,
that is Q4 is a triple point with 3 branches, two of which are simply tangent. The projective curve Cg is
absolutely irreducible and g(Cq) = 8.

Proof. Most of this statement is computed by MAGMA and SINGULAR, the absolute irreducibility follows

from Bezout. We shall not carry this out here since we shall give the same argument over the finite fields
IF,, later. 0

From general theory it is clear that Lemma 2.13 also holds for the curve C), for almost all primes p.
To get later explicit estimates, we have to find the exceptional set of primes. We put:

S ={2, 23, 37, 523, 864007 }
and prove:

Proposition 2.14. Let p be a prime with p ¢ S. Then the projective curve 6]0 has the 4 singular points
Qr=(w+1:0:1), Q2=(—w+1:0:1), Q3=(1:0:0), Q4 =(0:1:0)

where w is a root of x> — 2 in Fp. The points Q1, Q2, Q3 are ordinary double points whereas Q4 is a
triple point with 3 branches, two of which meet in Q4 of order 2 and the third intersects them transversally
(Dg-configuration). The projective curve Cp is absolutely irreducible and g(Cp) = 8.

Proof. We shall first find the singularities of Cj,. The description of the singularities is obtained by
looking at the blow ups of C), in the four singular points. These can be computed by SINGULAR or
MAGMA.

We shall now analyse the singularities on the first affine patch C;. Let a; be the ideal in Z[t, b]
generated by P and its derivatives with respect to ¢, b. A Grobner basis computation over Z carried out
in SINGULAR or MAGMA shows that sb € a; where

s = 35378249251012 = 4 - 23% - 37 - 523 - 864007.

We have (a1,b) = (b,t? —2t —1). This shows that the affine patch Cj contains only the (distinct)
singular points @1, Q.

Let O be the ring of integers in Q[v/2]. Note that O = Z[v/2]. The points Q;, Q2 have their
coordinates in O/p where p is a prime ideal of O containing p. The polynomial P(v + /2 + 1,b) has
Hy(b,v) = —(v2+1)b*+2(v/2+2)bv+8v? as its homogeneous part of lowest degree. A simple computation
shows that the only prime ideals p of O with the property that Hs(b, v) is a square modulo p are p; = /20
and py = (—3 + 4v/2)O. Note that p, contains 23. The point Q5 is analysed similarly.

This shows that for p ¢ S the affine patch C; only contains the ordinary double points @1, Q2 as
singularities. Note that dg, = dg, = 1.



20 BANDMAN, GREUEL, GRUNEWALD, KUNYAVSKII, PFISTER, PLOTKIN

We shall now analyse the singularities on the second affine patch Cg. Put Py(t,z) = P(t,1,2). Let
az be the ideal in Z[t,z] generated by P» and its derivatives with respect to ¢, z. A Grébner basis
computation over Z carried out in MAGMA shows that s2b € as where

S9 = 66877597828 = 4 - 37 - 523 - 864007.

We have (aq, z) = <z,t2>. This shows that this affine patch contains only the singular point Q4. The
polynomial P (t, z) has t?z as its homogeneous part of lowest degree, hence @ is a triple point. Let C be
the affine curve over F,, given by P> and C be the curve given by the polynomial T} (¢, z) = Pa(t, 2t) /t>.
The polynomial 77 has ¢ + z as its homogeneous part of lowest degree. This shows that the blown up
curve C; has only a simple point lying over (0,0) € C. Let Cs be the curve given by the polynomial
Ty (t,2) = Pa(tz, 2)/23. The polynomial Ty has t? + 22 as its degree 2 homogeneous part. This shows that
the blown up curve Cs has an ordinary double point lying over (0,0) € C.

This shows that 3 branches meet in Q4. Two of them intersect of order 2 and the third intersects
these transversally. By M. Noether’s formula (d¢g, equals the sum of mg(mg — 1)/2 where @ runs over
all points in all blow-ups lying over Q4 and mg is the multiplicity of @) we find dg, = 4.

We shall now analyse the singularities on the third affine patch C;’. Put Ps(b, z) = ﬁ(l, b,z). Let a3 be
the ideal in Z[b, z] generated by Ps and its derivatives with respect to b, z. A Grdébner basis computation
over Z carried out in MAGMA shows that sb € az. We have (as,b) = (b, 2(2? + 2z — 1)). This shows
that @3 is the only singular point on this patch which was not found on the previous affine patches. The
polynomial P3(b, z) has —(b+ z)z as its homogeneous part of lowest degree.

This shows that @3 is an ordinary double point and d¢g, = 1.

So far we have described the singularities of C},.h The degree of C,, being also 7, we find g(C)) =
5-1-1-1-4=8.

It remains to prove the absolute irreducibility of C},. Suppose C}, had 2 components Cy, Cy. From the
description of the singularities we infer the following possibilities for the intersection numbers:

I(C1,C;Q1) =0,1, I(C1,C2Q2)=0,1, I(C1,C9;Q3)=0,1, I(Cy,C2;Q4)=0,2,3.

Note that Q1,...,Q4 do not lie on a common line. The degree of Up being 7, Bezout’s theorem shows
that C), is absolutely irreducible. O

Although we shall not need all of it, we shall also describe the situation for the exceptional primes p
in S. We start with p = 2.

Proposition 2.15. The projective curve Cy has the 4 singular points

Q1=(1:0:1), Q2=(0:1:1), Q3=(1:0:0), Qs=(0:1:0).
The points Q1, Q2, Q3 are double points whereas Q4 is a triple point. The point Q3 is ordinary, at
Q1 two branches with a common tangent touch of order 2, Q2 is an ordinary cusp, at Q4 two branches

with distinct tangents meet, one of them behaves like a third order cusp, the other is smooth in Q4 (a
Dg-configuration). The projective curve Cy is absolutely irreducible and g(Cs) = 6.

Proof. We shall first find the singularities of (5. The description of the singularities is obtained by looking
at the blow ups of C3 in the four singular points. These can be computed by MAGMA or SINGULAR.

We shall now analyse the singularities on the first affine patch C3 (z = 1). The Jacobian ideal of
P(t,b) is generated by b?(b*> + 1) and t2 + b2 + 1. This shows that Q1, Q2 are the only singularities on
this affine patch.

Put Ly(t,b) = P(t + 1,b). The polynomial L;(¢,b) has b? as homogeneous component of lowest
degree. Let C be the affine curve over Fy given by L; and C; be the curve given by the polynomial
Ti(t,b) = L1(th,b)/b%. A look at Ty shows that there is no point of C lying over (0,0) € C. Let Cs be
the curve given by the polynomial T(t,b) = L1 (t,tb)/t?. The polynomial has b(b+1t) as its homogeneous
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component of lowest degree. This shows that there is an ordinary double point over (0,0) € C on Cs.
Altogether we find that two branches with a common tangent touch of order 2 in ;. This implies
0o, = 2.

Put La(t,b) = P(t,b+ 1). The polynomial Ly(t,b) has (t + b)? as homogeneous component of lowest
degree. Let C be the affine curve over Fy given by La. Both blow-ups of (0,0) € C contain (the same)
smooth point over (0,0) € C. This shows that ()2 is a cusp (one branch passing through @2) and d¢g, = 1.

We shall now analyse the singularities on the second affine patch C3 (b = 1). The points Q2 and Q4
are the only singularities on this affine patch. To analyse Q4, put P (t,z) = P(t,1,z). The polynomial
P, has 2z as its homogeneous component of lowest degree. Hence Q4 is a triple point with two distinct
tangents. Let C be the affine curve over Fy given by P,. In the first blow-up (z = zt) we find a simple
point over (0,0) € C, In the second blow-up we find a point Q5 of multiplicity 2 with a double tangent
over (0,0) € C. The blow-ups of Q5 give one double point with a double tangent Qs. The blow-ups
of Q¢ give one simple point Q7. This shows that at Q4 two branches with distinct tangents meet, one
of them behaves like a third order cusp, the other is smooth in Q4. By M. Noether’s formula we find

do,=3+1+1="5

We shall now analyse the singularities on the third affine patch C3 (¢ :l) The points 1 and Q3 are
the only singularities on this affine patch. To analyse Qs put Ps(b,z) = P(1,b,2). The polynomial P;
has bz as its homogeneous component of lowest degree. This shows that ()3 is an ordinary double point
and g, = 1.

The analysis of the singularities being completed, we have found g(Cy) =15 -2 —1—1—5=6.

Suppose C had 2 components C, Cy. From the description of the singularities we infer the following
possibilities for the intersection numbers:

I(C1,C;Q1) = 0,2, I(C1,02:Q2) =0, I(C1,C2;Q3)=0,1, I(C1,C2;Q4) =0, 2.
These numbers cannot add up to 6 or more. The degree of C, being 7, Bezout’s theorem shows that

6& is absolutely irreducible. O

Proposition 2.16. The projective curve Cas has the 4 singular points
Q1=(19:0:1), Q2=(6:0:1), Q3=(1:0:0), Q+=(0:1:0).

The points Q2, Q3 are ordinary double points, Q1 is an ordinary cusp, whereas Q4 is a triple point
with 3 branches, two of which meet in Q4 of order 2 and the third intersects them transversally (Dg-
configuration). Q1 is a cusp singularity. The projective curve Cag is absolutely irreducible and g(Ca3) = 8.

Proof. The singular points and their types were computed by MAGMA. To complete the Bezout argument
notice that Q4 does not lie on a line with at the three double points. O

Proposition 2.17. The projective curve Csy has the 8 singular points

Qr=(w+1:0:1), Q:2=(—w+1:0:1), Q3= (1:0:0), Qi=(0:1:0),
Qs =(27:17:1), Qe =1(10:10:1), Q7=1(10:24:1), Qs =1(27:34:1),

where w is a root of 2 — 2 in Fs7. The points Q1, Qa2, Qs3, Qs, Qs, Q7, Qs are ordinary double points
whereas Q4 is a triple point with 3 branches, two of which meet in Q4 of order 2 and the third intersects
them transversally (Dg-configuration). The projective curve Cgy is absolutely irreducible and g(Csr) = 4.

Proof. The singular points and their types were computed by MAGMA. To complete the Bezout argument
notice that Q4 does not lie on a line with at least three of the double points, and also that the points
Q1,...,Qs do not lie on a quadric. O
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Proposition 2.18. The projective curve Csas has the 5 singular points
Qr=(w+1:0:1), Qa=(-w+1:0:1), Q3=(1:0:0), Qs=(0:1:0), 5=(479:463:1),

where w is a root of x> — 2 in Fsa3. The points Q1, Q2, Q3, Qs are ordinary double points whereas
Q4 1s a triple point with 3 branches, two of which meet in Q4 of order 2 and the third intersects them
transversally (Dg-configuration). The projective curve Csaz is absolutely irreducible and g(Csa3) = 7.

Proof. The singular points and their types were computed by MAGMA. To complete the Bezout argument
notice that Q4 does not lie on a line with at least three of the double points. O

Proposition 2.19. The projective curve Cggaoor has the 5 singular points

Q1= (767405:0:1), Q2= (96604:0:1), Q3= (1:0:0),
Qi=(0:1:0), Qs = (395579 : 564628 : 1) .

The points Q1, Q2, Qs3, Qs are ordinary double points whereas Q4 is a triple point with 3 branches,
two of which meet in Q4 of order 2 and the third intersects them transversally (Dg-configuration). The
projective curve Csgaoor is absolutely irreducible and g(Csgaoo7) = 7.

Proof. The singular points and their types were computed by MAGMA. To complete the Bezout argument
notice that Q4 does not lie on a line with at least three of the double points. O

We are now ready for the

Proof of Proposition 2.11: We first assume that the prime p satisfies p ¢ S and also p # 3. We shall then
show that the statement of Proposition 2.11 is already true for ¢ = p. We have to show that #C),(F,) > 5,
which is by Lemma 2.12 equivalent to #C,(F,) > 7. We write D, for a nonsingular model of C,, and
mp: Dp — C, for the birational projection. The map 7, is defined over F,,. Let M C C,(FF,) be the set
of singular points. The map m, defines a bijection

7p : Dp(Fp) N ﬂ;l(M) — Cp(Fp) N M.
Since the singularities of C,, are three double and a triple point, we find:
#Cp(Fp) = #Dp(Fp) — 5.
Hence, it is sufficient to show that #D,(F,) > 12. By the Hasse-Weil estimate we know that p —16,/p <
#D,(F,). If p > 280, we infer #D,(F,) > 12. If p < 280, we use Table 4.

For the primes p € S, p # 2, 3 we also have #C),(FF,) > 5 by Table 4 or the addition (*). For ¢ = 2*,
k > 2, we use Proposition 2.15 and an argument similar to the above to show A(Fyx) > 5 for k > 8. The
remaining values can be found in Table 3. For ¢ = 3%, k > 2, we use Proposition 2.14 and an argument
similar to the above to show A(Fsr) > 5 for k > 6. The remaining values can be found in Table 3.

3. THE DETAILS OF THE SUZUKI CASE

3.1. The variety V and the Suzuki groups. We shall explain here in more detail the relationship of
the variety V constructed in Subsection 1.3 to the Suzuki groups. We use the following representation
for Sz(g). Let n = 2m + 1 and ¢ = 2" and consider the automorphism 0: F, — F,, 6(a) = a?" " We

have 62(a) = a?, that is, 7 is the square root of the Frobenius.

Let
1 0 0 0
1
(3.1) U(a,b) = ¢ ° 01
af(a) +b fa) 1 0
a*0(a) +ab+600b) b a 1
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A2 0 0 00 0 1
0 A" 0 0 0010

M(c) = m , T =
(c) 0 0 2 0 010 0
0 0 0 -2 1 000

Then Sz(q) = (U(a,b), M(c),T | a,b,c € Fy,c # 0) C SL(4,F,).

To show that u;(z,y) = uz(z,y) has a solution with y # x~1, we consider the matrices X = TU (a, b)
and Y = TU(c,d) in Sz(q). It is easy to see that Y = X1 in Sz(q) if and only if a, b, c,d are all 0.

To eliminate the dependence of X and Y on ¢, we replace 6(a),...,0(d) with ag,...,dy which we
regard as indeterminates, along with a, ..., d. We thus arrive to the matrices z,y € GL(4, R) defined in
(1.4), where R =Fsla,...,d,ag,...,dp] is the polynomial ring in 8 variables.

Using the definition of the ideal a C R and the variety V, (see Subsection 1.3), we can easily produce
16 generators of a and prove that 7(a) = a and dim(V) = 2 (a SINGULAR computation). Hence V is
preserved by the operator a, and we have

Proposition 3.1. The matrices corresponding to a fixed point of &™ (n odd and n > 3) lie in Sz(2").

Proof. Let p = (a,...,dg) € V be a fixed point of a®™*+1. We have a = agmﬂ, ag = a2 (and hence
a=a*", a = 6(a)), and the same formulas hold for b, ¢, d, by, co, dy. To finish the proof, it remains to
combine this with formulas (1.4) and (3.1). O

To sum up, we obtained the following reduction.
Theorem 3.2. Suppose that for every odd n > 1 the operator " has a non-zero IFy-rational fixed point

on the variety V. Then the equation u; = us has a non-trivial solution in Sz(q) for every ¢ = 2™.

3.2. The geometric structure of V. In this subsection we study the 2-dimensional component V' of
V. We prove that it is absolutely irreducible and find a smooth open affine subset U C V' invariant
under a.

In order to facilitate computer output, we slightly change notation: we denote ag = v, by = w, ¢y = =,
dy = y; we will replace a by I, and a’ by J. SINGULAR gives 16 polynomials generating the ideal I:

ring A=2,(a,b,c,d,v,w,x,y),dp;

matrix S1[4][4] =1 0, 0, 0O,
a, 1, 0, O,
av+b, v, 1, O,
a2v+a*xb+w, b, a, 1;
matrix S2[4] [4] =1, 0, 0, 0O,
c, 1, 0, O,
cx+d, x, 1, O,
c2x+cxd+y, d, c, 1;
matrix T[4][4] = 0, O, O, 1,
0, 0, 1, O,
0o, 1, 0, O,
1, 0, 0, O;

-

matrix X=T*S1; matrix Y=T*S2;
matrix iX = inverse(X); matrix iY = inverse(Y);
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matrix M=iX*YxiX*iY*xX*X-Y*iX*iX*iY*X*iY;
ideal I=flatten(M); I;

(we dispense with the output).

To show that a™ has a rational fixed point on V', we want to apply the Lefschetz trace formula, which
requires that V' is absolutely irreducible. This is not the case. Therefore, we exhibit a subvariety V' C V
for which we can show that it is absolutely irreducible. Then we apply the Lefschetz trace formula to the
non-singular locus of V'’ which happens to be affine.

Set J =1 :a®*z? then J D I and V' := V(J) C V(I) = V. Computing I : a32z? is not an easy
task. However, once J is given, it is much simpler to check J D I, which is all we need. The ideal J is
computed as follows:

ideal J=quotient(I,a3x2); J;

J[1]=d2+adv+cdv+a2v2+c2v2+abx+bex+wx+c2x2+vy+xy+c2;
J[2]=a2b+acd+a2cv+aw+al3x+a2cxtac2x+tay+tav+cx;
J[3]=bcw+acvw+w2+a2ux+acwx+b2+bd+d2+abv+bcv+c2v2+becx+adx+ad
+a3ctvx+x2+ac+l;
J[4]=adv2+cdv2+d2x+abvx+bcvx+advx+cdvx+vwx+abx2+bcx2+wx2
+c2x3+v2y+vxy+x2yt+ab+cdtacv+c2vtwtal2xtacx+c2x+y;
J[5]=abd+abcv+bc2v+a2dv+dw+avw+cvw+be2x+c2dx+ac2vi+awx
+a2cx2+ac2x2+c3x2+by+cxy+dv+av2+cv2+bx+cx2+ac2+atc;
J[6]=bcd+cd2+a2bv+abcv+a2dv+c2dv+bw+avw+cvw+a2dx+c2dx+c3vx
+a3x2+a2cx2+ac2x2+by+dy+cvy+axy+bv+dv+cv2+dx+cvx+tax2+
a3+a+c;
J[7]=a3v2+a2cv2+c2dx+al3vx+ac2vx+a2cx2+ac2x2+c3x2+cxy+cx2;
J[8]=d2v+acv3+c2v3+cdvx+a2vx2+acvx2+a2bc+ac2d+ac3v+acw+aldcx
+vx2+acy+a2v+acx+v;
J[9]=advx+cdvx+a2v2x+c2v2x+abx2+bcx2+a2vx2+c2vx2+wx2+vxy+c3d
+a3cv+a2c2v+a3dcx+a2c2x+cdx+c2y+cd+a2v+c2v+tc2x+y;
J[10]=a2vw+acvw+c2vw+w2+ac2dx+c3dx+a3cvx+ac3vx+acwx+c2wx
+a3cx2+c4x2+aby+acxy+c2xy+a2v2+acv2+abx+adx+cdx+a2vx
+acvx+c2vx+a2x2+c2x2+ad+a2c2+v2+1;

It turns out to be sufficient, and easier, to work temporarily with generic a and ¢, that is, to work over
Fa(a,c)[w,y,b,d, x,y], where Fa(a,c) denotes the field of fractions of Fa[a,c]. Fortunately, SINGULAR
allows the computation of Grobner bases over such rings. We compute a Grobner basis of the ideal
J3 = JFs(a,c)|w,y,b,d, z,v] with respect to the lexicographical ordering.

ring s=(2,a,c),(w,y,b,d,x,v),1lp;

ideal J3=std(imap(r,J));J3;

J3[1]=(a8+ab6c2+adcld+a2c6) *v6+(a8+a7c3+abc2+abc3+adcd+al3c7+a2ch
+ac7) *v4+(a7c3+abc2+abcb+abc3+a3c7+a3ch+a2c6+a2cd+ac9+c6)
*v2+(ac9+acb+c8+c4) ;

J3[2]=(adc4+a3c7+a3chb+ald3c3+a2c8+a2ci+ac7+c4) *xx+(a8+a7c+adcsd
+a3ch) *vb+(a8+a7ct+abc2+abc3+adcd+adc2+a2cb6+a2cd) *v3
+(adc4+adc2+a3c7+a3c3+a2c8+a2ch) *v;

J3[3]=(c2+1) *d2+ (xc3+xc) *d+ (v3xa2+v3xc2+v2ad+v2a3c+v2ac3+v2csd
+vxad+vxa3c+vxa2c2+vxcd+x2a2c2+x2a2+x2ac3+x2c2+cd+c2) ;

J3[4]=(ach+ac) *b+(v4a2c2+v4a2+v3xac+v2x2cd+v2x2c2+v2abec+v2ad
+v2a2c4+v2ac3+vx3actvx3+vxabctvxad+vxa3c3+vxa2cd+vxa2c2
+vxach+vxac3+vxactvxc2+vx+x2a3c3+x2a2c2+x2acb+x2cd+a2c4d
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+a2c2+ac3+ac+cid+c2) *d+ (v2xa2c3+v2xch+vx2a3+vx2ac2+vabc2
+vadc+va3+va2c+vac6+vacd+vac2+vcb+xabc2+xadc+xa2c3+xalc
+xac6+xac2+xc3) ;
J3[5]=(c)*y+(va2c+va) *bd+ (v2ac+v2c2+x4+c4+1) xb+ (vda3c+védac
+v3xc2+v2x2ac3+v2x2ac+v2ad+v2a3c3+v2ac3+v2c2+vx3c2+vxad
+vxa3dc3+vxa3dctvxa2cd+vxa2+vxac3+vxac+x2a3ct+x2a2cd+x2a2
+x2ac+x2+ac3+ac+c2+1) xd+(v3x2ac2+v3x2c3+v3a3cd+v3a3c2
+v3a2c3+v3a2c+v3acd+v3c3+v2xa3dc2+v2xa3d+v2xa2cb+v2xch
+v2xct+vx4a3+vx4a2ctvxdatvxdctvx2a7+vx2ab+vx2a3dc2+vx2a2c3
+vx2at+vx2c3+vx2c+va7c2+var7+vadctva3dcb+vadcd+va3c2+va2ceh
+va2c+vac6+vacd+vc3+vc+xbatxbc+x3abec+x3ab+x3adc+x3a3
+x3a2c+x3ac2+x3c+xa7c2+xabc+xabc2+xadc3+xa3c6+xa3csd
+xa3c2+xa3+xa2cb+xa2c3+xa2c+xac6+xacd+xa) ;
J3[6]=u+(vx+1) *y+(a) *b+(vxc+c) *d+(v3a2+v3ac+v2xa2+v2xc2+vx2a2
+vx2ac+vx2c2+vx2+va2c2+va2+vac3+v+xa2c2+xa2+xac3+xc2) ;

dim(J3) ; returns 0, hence V' is a surface.
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Let f = (a® + a®c® + a%c + ac* + ac? + ¢)(ac + 1)(a + ¢)(c + 1)ac be the least common multiple of the

leading coefficients of this Grobner basis. Then, using SINGULAR?, we obtain
J3NFala,c,w,y,b,d,x,v] = (J3[1],...,J3[6]) : [ = (J3[1],...

,J3[6]) : o=

Since J : f = J, no factor of f divides all elements of J. That is why the irreducibility of J3 as an

ideal of Fa(a, ¢)[w,y, b, d, z,v] implies the irreducibility of J.
Furthermore, we compute the vector space dimension over Fy(a,c) as

dimg, (q,c) F2(a, ¢)[w,y,b,d, z,v]/J3 = 12.

Next we show that J3NFa(a,c)[b] = (h) with the following polynomial h, which we compute directly by

elimination (using SINGULAR).

poly h=(al8c2+al6+aldc6+al2c4+al0c10+a8c8+abcld+adcl2) *b12
+(a20c2+a19cb+al8+al7c7+al7cb+al7c3+al6c6+albc7+albchb+al5c3
+alé4c4+al3cb+al2c10+allc13+a10c8+a9c15+a9c13+a9cl11+a8cl4
+a7cl15+a7c13+a7cll+abcl12+ab5c13) *b10+(a21c5+a20c4+al19c5+al19c3
+al8c2+al7c9+al7c3+albcb+alb+albc7+aldc6+aldcd+aldc2+al3cll
+al2cl12+allc13+allc11+al0c10+al0c6+a9cl7+a9cl1+a8c14+a8c8
+a7c15+a6cl4+abci12+abc10+a2c14) *b8+ (a24c2+a22c4+a22+al18c6
+al8c4+al7cll+al7c3+al6c8+albcl13+albc9+albc7+albecb+aldcl0
+al4c8+al3c15+al3cl1+al3c9+al3c7+al2c14+al2c12+al2c8+allcl?
+allcl3+allcli+allcb+alOc16+al0c12+al0c10+al0c4+a9c15+a9c13
+a9c11+a9c9+a8c12+a8cb6+a7cl3+a7cll+abcld+abc8+abcl1b5+abecl3
+a4c10+a3c15+a3c13) *b6+ (a26c2+a25c5+a24c4+a24+a23c5+a23c3
+a22c2+a21c9+a21cb+a21c3+a20c8+a20c6+a20+a19cb+al18c10+a18c8
+al8c6+al8c2+al7c13+al7cb+al7c3+albcb+albcd+alb+albelld
+albcll+albc9+albc7+albcb+aldcl2+aldc8+aldc6+aldcd+al3cl7
+al3cl1+al13c5+al2ci14+al2c12+al2c10+al2c8+al2cb6+al2cd4+alicll
+allc9+allc7+al10c12+al10c10+a9c17+a9c7+a8c12+a8c10+a8c8+a8c4
+a7cll+abcld+abcl2+abcb6+abecl7+abeclb+abcl13+abclli+adcl12+a2c10
+c12) *b4+ (a27cb+a26c4+a25c7+a25c5+a25c3+a24c6+a24c2+a23c7
+a23cb+a23c3+a22c6+a21c7+a21cb+a21c3+a20c8+al9c13+al19c9+al9c7

2The first equality is a general fact (cf. [GP3]). To see that (J3[1],...,J3[6]) : £ = J, it is sufficient to know that
J D (J3[1],...,J3[6]), J = J : f and that (J3[1],...,J3[6]) : f>° is a prime ideal, which we shall see later. This is,

computationally, much easier to check than a direct computation.
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+a19c5+a18c12+a18c10+al18c8+al8c6+al8c4+al8+al7clb+al7c13+al7c9
+al7cb+al6bclé+albcl2+albe8+albed+albeclb+albe3+aldcl12+aldcl0
+ald4c6+aldcd4+al3cli+al3cb+al2cl4+al2c8+allcl13+allc9+allch
+al1l0c14+a10c12+a10c10+a9c13+a9c11+a9c9+a8c12+a8c10+a7cl1l3+abcld
+abc1b+adci4+adci12+a4c8+a3c15+a3ci13+a2c14+a2c10)*b2
+(a26c6+a24c4+a22c6+a20+al8cl4+al6cl2+albecd+alb+aldcld+aldclO
+aldc2+a8c12+a8c8+a8c4+abcld+abcl10+adcl2+a2c14+a2c10+c8);

h is a polynomial of degree 12 with respect to b and therefore dimg, (4,c) F2(a, ¢)[b]/(J3NFa(a, c)[b]) =
12. Since dimg, 4,0y Fo(a, c)[w,y,b,d,x,v]/J3 is also 12, we know that a lexicographical Grobner basis

with respect to b < v < x < d < y < w of J3 must have leading polynomials as follows: b2, v, z,d, y, w.

It follows that the projection
[a,b,c,d,v,w,z,y] — (a,b,c)
over the field Fa(a,c) is birational on V(J3). The image of V(J3) in Fy(a,c)[b] is defined by the
polynomial h.

This implies that J3Fs(a, c)[w,y,d, z,v,b] is a prime ideal if & is absolutely irreducible. In particular,
we obtain that J is absolutely irreducible if h is absolutely irreducible.

To prove that h is absolutely irreducible, we proceed as follows:

First we show that the radical of the ideal of the coefficients of h in Fs[a,c] with respect to b is
{(a,ey N{a+1,c+ 1). We do this using the factorising Grobner basis algorithm.

ideal JF=coeffs(h,b); facstd(JF);
[1]:

_[11=c

_[2]=a
[2]:

_[1]=c+1

_[2]=a+1

This implies that h cannot have a nontrivial factor in Fyla, ¢]. Then we consider (b, ¢) = h(1,b, c).
subst(h,a,1);
(c+1)"14xb12+(c+1) "14xb10+(c+1) "11* (c6+cb+cd+c+1) *b8+(c+1) " 11

* (c6+cl+c2+c+1) *b6+(c+1) "8* (c9+c7+c5+cd+c3+c2+1) *bd+(c+1) ~10
*b2+(c+1) "10*c2;

c+1
situation, we make the transformation ¢ — ¢+ 1.

It is sufficient to show that f(z,c) = ﬁ( & c) /(c+ 1)? is absolutely irreducible. To simplify the

Letag=+P+ct+2+1andays=+S+c T+ S+t +2+1.
Lemma 3.3. The polynomial
f=a2 422" 4 caga® + (P + e+ 1)2® + Paga® + Sa? + S(c+ 1)?
is irreducible in Fao[z, c].
Proof. We check that f(x,c?) is the square of some polynomial g, that is, g is defined by ¢?(z,c) =
f(x,c?). Tt suffices to prove that g is irreducible: if f = fif2 is a non-trivial decomposition, then

g% = fi(x,c?) fa(x, c?). If g is irreducible, we obtain g = f1(x,c?) = fa(z,c?). This implies f = fZ, which
is obviously not true.

3We do not need to compute directly J3 NF2(a,c)[b] = (h) which is difficult. Once h is given, it suffices to know that h
is irreducible of degree 12, dimg, (4,¢) F2(a, ¢)[w, y, b,d, z,v]/J3 = 12 and h € J3, which is much easier to check.
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The polynomial g is g = 26 + 225 + casx? + 2(c® + ¢ + 1)23 + c2azz? + Cx + B(c + 1)2.
First step: g has no linear factor in .

A linear factor of g has to be of the form x — zoc’(c + 1)7 for some zg € Fo and i < 8, j < 2. Now it
is easy to see, using divisibility by ¢, that g(xoci(c +1)7, c) #0fori=0,1,2,4,...,8. In the case i = 3,
g(zoc(c + 1)7,¢)) # 0 because (zoc®(c + 1)j)6 has degree 18 + 65 with respect to ¢, which is strictly
larger than the degree of the other summands.
Second step: g has no quadratic factor in x.

Assume that g = (2% 4+ aa® + B2? + vo + 0)(2% + ex + p) for a, ..., u € Fa[c]. Then we obtain

(1) po = cSe+1)?

(2) py+ed = 8

3) wB+ey+d = cap

(4) pa+eB+y = A +ce+1)
(5) pHea+pf = cay

(6) eta =

Now g(z,0) = 2% implies that c|a, 3,7, 6, ¢, u. Therefore, they all have degree < 10. Equation (2)
implies that (¢ + 1)|u and (¢ + 1)|§ are not possible. (3) and (4) imply that ¢?|6 and ¢?|y and, therefore
deg(p) < 8. (4), (5) and (6) imply that deg(e) < 4 and deg(a) < 4.

If deg(u) = 8, then deg(py) > 10 and (2) implies that deg(ed) > 10. This implies that deg(e) > 8,
which is not possible, as we already saw.

If deg(e) = deg(a) = 4, then (5) implies deg(f) = 8. This implies deg(ef) = 12 and, therefore, by (4),
deg(pa)) = 12. This contradicts deg(u) < 7 and deg(a) = 4. Thus, we have deg(e) < 3 and deg(a) < 3.
This implies, using (5), deg(8) < 7.

If deg(u) = 6, then deg(d) = 4 implies deg(py) > 8 and deg(de) < 7, contradicting (2).

We obtain deg(p) < 5 and, using (5), deg(5) = 7. If deg(p) < 3, then deg(u) < 10 and (3) implies
deg(ey) = 11. We shall see that this is not possible.

If deg(e) = 3, then deg(e) = 10 and (4) implies that deg(y) = 10. This contradicts deg(ey) = 11.
If deg(e) = 2 then deg(e) = 9 and deg(y) = 9. This contradicts (2).
If deg(e) = 1, then deg(ef) = 8 and deg(+y) = 10. This contradicts (4).

Finally, we obtain 4 < deg(u) < 5. This implies ¢2|u and ¢®|6 and, consequently, ¢3|u3. But we know
already that c?|y and, therefore, ¢3|ey and obtain a contradiction to (3).

Third step: g has no cubic factor in z.

Let g = (23 + ax? + Bz + v) (2% + 62 + ex + p), then we obtain

(1) o= Sle+1)?

(2) vetud =

(3) pa+eB++86 = c2ay

(4) ptac+pi+~y = AP +c+1)
(5) e+ad+0 = cay

(6) a+é = 2

Now, g(x,0) = 2 implies c|a, 3,7, 5, &, .

As in the previous case, (c+1)|v, p is not possible. If ¢ v, then ¢®|u and, by (2), c®|ey, which implies
c3|e. This contradicts (3) and (4), because (3) implies ¢3 { vd and, therefore, ¢ { 7.
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We obtain that ¢ty and, by symmetry, ¢*|u. We may assume that v = yoc*(c + 1)? and p = poc? for
suitable 7o, 1o € Fa. This implies deg(d) < 5, deg(e) < 5 and deg(«) < 7, deg(8) < 7 by using (3), since
ag is of degree 9.

If deg(a) > 4, then deg(d) > 4 by (6). This implies deg(ad) > 8, which contradicts (5). We obtain
that deg(a) < 3, deg(d) < 3. This implies, using (5), that deg(8) = 7. Now (4) implies that deg(d) = 2
and we obtain, using (3), that deg(e) = 4. This is a contradiction to (2) and finishes the third step. O

Altogether, we proved now that V' = V(J) is absolutely irreducible. Next we compute the singular
locus of V(J), using SINGULAR (with a special procedure).

Lemma 3.4. The singular locus of V(J) is the union of the following siz smooth curves defined by the
ideals S1,...,S56.

S1[1l=y; S1[2]=x; S1[3]=v2+vw+w2+1; S1[4]=d+1; S1[5]=c+
1;

S1[6]=b+u+1; Si1[7]=a+1;

S2[1]=y+1; S2[2]=x+1; S2[3]=v+u+1; S2[4]=4d; S2[5]=c;

S2[6]=b2+w2+w+1; S2[7]=a;

S3[1]=y+1; S3[2]=x+1; S3[3]=v+1; S3[4]=d S3[5]=c;
S3[6]=b2+w+1; S3[7]=a2+ab+w;

S4[1]=y; S4[2]=x; S4[3]=v; S4[4]=4+ S4[5]=c+
1;

S4[6]=b2+b+w+1; S4[7]=a+b+1;

S5[1]=x2+y; S5[2]=wy+x; S5[3]=ux+1; S5[4]=v; S85[5]=42
+xXy+Xx;

S5[6]=c; S5[7]1=by+b+dw+d; S5[8]=bx+b+dw; S5[9]=bw+b+dw2;
S5[10]=bd+x+1; S5[11]=b2+w; S5[12]=a+dw;

S6[1]=x; S6[2]=w3y+w2+1; S6[3]=v+u2y; S6[4]=d+wy+1; S6[5]=c+
w2y+w;

S6[6]=b+w; S6[7]=a;

Corollary 3.5. The singular locus of V' is contained in the set S = V' NV (xc). The variety U = V'S
is a smooth irreducible affine surface invariant under the morphism «. For any odd n, o™ has no fized
points in S.

Proof. The first two assertions are checked directly, looking at the equations S1-S6 and the equation for
the action of a. To prove the third, assume that p = (a,b,...,y) is a fixed point of a™ lying on S. Let
x = 0. Then, since p is o™ invariant, we have ¢ = 0. Since p € V', equation J3[1] gives a8v% + a%v* = 0.
(The variety defined by the ideal J3 contains V' as a component, so p must satisfy all the equations of
J3.) Hence we have either a = 0, or v =0, or v = 1.

In any of the two first cases we have a = v = ¢ = & = 0, and equation J3[3] gives d = 0. Since p is an
invariant point, we get y = 0. Furthermore, equation J[4] gives w = 0. Hence b = 0, contradiction.

If v =1, then a = 1 which, taking into account a = ¢ = 0, contradicts J[7]. O
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3.3. Trace formula. Throughout this subsection k denotes a (fixed) algebraic closure of Fo. All varieties
under consideration, even those defined over o, are viewed as k-varieties.

Let V' be the variety defined by equations J[1],..., J[10] (see Subsection 3.2). We have seen that this
is an irreducible affine surface. Computations in Subsection 3.2 show that the singular locus of V' is
contained in the set S = V' N V(zc). By Corollary 3.5 the variety U = V' . S is a smooth irreducible
affine surface invariant under the morphism « acting in A® as

(3'2) a(a’ b’ C’ d’ /U7 w’ ‘/L.’ y) = (U7 w7 'T’ y) a2’ b2) C2, d2)
(see Subsection 3.1).

Our goal is to prove that for n odd and large enough, the set U has an a”-invariant point. In this
subsection we prove an estimate of Lang—Weil type:

Theorem 3.6. With the above notation, let # Fix(U,n) be the number of fixed points of o™ (counted
with their multiplicities). Then for any odd n > 1 the following inequality holds:

(3.3) |4 Fix(U,n) — 2" < bH(U)2°™* + b2(U)2"/2,
where b'(U) = dim H, (U, Q,) are £-adic Betti numbers (£ # 2).

The strategy of proof is as follows. The operator « and all its powers act on the étale f-adic cohomology
groups H(U,Q,) of U (with compact support). We are going to apply Deligne’s conjecture (proved by
T. Zink for surfaces [Zi], by Pink [Pi] in arbitrary dimension (modulo resolution of singularities), and by
Fujiwara [Fu] in the general case) saying that the Lefschetz(—Weil-Grothendieck—Verdier) trace formula
is valid for any operator on U composed with sufficiently large power of the Frobenius (in our case this
means sufficiently large odd power of a)). We shall show that in our case the trace formula is already valid
after twisting with the first power of the Frobenius. This fact is a consequence of the above mentioned
results on Deligne’s conjecture together with the following crucial observation: roughly speaking, if we
consider the closure U of U in P®, a (as well as any of its odd powers) has no fixed points at the boundary
(that is, on U \. U). As soon as the trace formula is established, the proof can be finished by applying
Deligne’s estimates of the eigenvalues of the Frobenius.

Let us make all this more precise.

Denote by I' (the transpose of) the graph of v acting on A® by formulas (3.2), that is, I' = {(a(M), M) :
M € A%}, and let Ty =T'N (U x U).

Consider the natural embedding A® C P® and denote by T (resp. I'y) C P& x P® the closure of T
(resp. T'ry) with respect to this embedding. Let Ho = (P® x P%) \ (A% x A®), Hy = (V' x V') \ (U x U),
H = HyU H;. Let A denote the diagonal of A% x A% A the diagonal of P® x P8, Ay = ANTy, and

Ay = ANTy. If nis a positive integer, denote the corresponding objects related to a” by T'")] f(n),
)

n) =) A (n) #(n
RN NN
Lemma 3.7. If n is odd, ng) = Agjn).

Proof. We have
AV AW T AN
We wish to prove that this set is empty. Since

)

TV AANHECTYNnUXU)NANH,

it is enough to prove that
™ nAnH=0.

First note that

)

T AANH, =T™ANANH, =0
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(the first equality is obvious since Hj is contained in A® x A8, and the second one immediately follows
"N N Hy = 0.

Let (a,b,c,d,v,w,z,y),(a’,b',...,y") be the coordinates in A® x A8 and let (a:b:---:t),(a" : ¥ :
---:t') be the homogeneous coordinates in P8 x P8. Suppose that

from Corollary 3.5). Hence we only have to prove that f(n

M=(a:b:---:t),(a:b:--:t)) Gf(n)ﬁZﬁHo.
If n =2m + 1, denote s = 2™. With this notation, since M € f(n), formulas (3.2) imply that

a/ — 5t b/ — wits C/ — S¢S d/ — ysts ’Ul — a2s w/ — b2s .CC/ — C2s y/ — d25 t/ — t2s
On the other hand, since M € Hy, we have t = ¢/ = 0, and hence o’ = b’ = ¢/ = d' = 0. Furthermore,
since M € A, we have @’ = Xa, ¥’ = A\b, ¢/ = A¢, d = A\d for some X\ € k, and hencea =b=c=d = 0.

This implies v' = w’ = 2’ = 3’ = 0, contradiction. O

The next goal is to show that the Lefschetz trace formula holds for all odd nth powers of a (n > 1). We
shall do it using the above mentioned results on Deligne’s conjecture. First we briefly recall the general
approach ([SGA5], [Zi], [Pi], [Fu]); we mainly use the notation of [Pi] and refer the reader to that paper
for more details.

(i) Global term. We can (and shall) view our operator a as a particular case of the correspondence a:

U&sTy 50U

(here a; and ay stand for the first and second projections, respectively). We regard an odd power o>™+1

as a “twisted” correspondence b = Fr"™ oa with by = Fr"" oay, by = as.

Let A denote a finite field extension of Qg, L a constructible A-sheaf (in our situation it suffices to
consider the constant sheaf I = Q,). Then a cohomological correspondence v on L with support in b is a
morphism u: b L — bbL, where * stands for the inverse image functor, and ' for the extraordinary inverse
image functor (cf. [Pi, Section 1] and references therein); in our situation by = id and hence byL = L.
Since by is a proper morphism, u induces an endomorphism uy: H? (U, L) — H2(U, L) which possesses a
well-defined trace tr(u) € A; this is the global term in the desired trace formula. In down-to-earth terms,
in our situation we have

4
(3.4) tr(u) =Y _(=1)'tr(a”[HI(U, Q).

=0

(ii) Compactification. Furthermore, since b; is proper, our correspondence b can be extended to a com-
pactification b

bl b2

U 'y U
i| | |
g T, 2.7

where the vertical arrows are open embeddings and the bottom line is proper. This gives rise to a
cohomological correspondence @ on the sheaf jiL with support in b; here | stands for the direct image
functor with compact support (extension by 0), cf. [Pi, 2.3].

The global term does not change after compactification:
(3.5) tr(a) = tr(w)
(see [Pi, Lemma 2.3.1]).

For a compactified correspondence the Lefschetz—Verdier trace formula is known (cf. [Pi, 2.2.1]):

(3.6) tr(m) =Y _ LTp(u)
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where D runs over all the connected components of Fix(b), and the local terms LTp(w) are defined as in
[Pi, 2.1]. In our case Fix(b) consists of isolated points (since this is true for the Frobenius), and all these
points are contained in U (because of Lemma 3.7 there are no fixed points at the boundary, neither on

the singular locus, nor at infinity).
(iil) Local terms. Suppose that by is quasifinite and y is a point not at infinity. Let 2 = ba(y), then
d(y) = [k(y)/k(z)]i - length Or, 4 /b5 (mu,eOv,),

where [k(y)/k(z)]; denotes the inseparable degree of the residue field extension. Clearly, in our case
by = id implies d(y) = 1.

By [Fu, Th. 5.2.1], for an isolated fixed point y at finite distance we have
(3.7) LT, (u) = try(u)
provided 2™ > d(y). In our setting,
(3.8) try(u) equals the multiplicity of y
(cf. [Zi, p. 338], [Pi, 8.3.1]).

(iv) Summing up, (i)—(iii) (or, more precisely, formulas (3.4), (3.5), (3.6), (3.7), (3.8), together with
Lemma 3.7) imply

Proposition 3.8. If n > 1 is an odd integer, then
4 . . JE—
(3.9) #Fix(U,n) = (~1)'tr(a" | HI(U,Qy)).

=0

We are now ready to prove Theorem 3.6. Since U is non-singular, the ordinary and compact Betti
numbers of U are related by Poincaré duality [Ka2, p. 6], and we have b% = b*~%. Since U is affine,
bi(U) = 0 for i > 2 [Ka2, loc. cit.]. Since U is geometrically integral, b°(U) = 1 and Fr acts on the
one-dimensional vector space H°(U,Q,) as multiplication by 4 [Ka2, loc. cit.]. Hence « acts on the
same space as multiplication by 2. (Indeed, if it were multiplication by (—2), for a sufficiently big power
of a the right-hand side of (3.9) would be negative.) Hence o™ acts as multiplication by 2™. Thus
tr(a" | HE(U,Qy)) = 2",

On the other hand, according to Deligne [De, Th. 1] for every eigenvalue a; of Fr acting on HX(U, Q,)
we have |a;;| < 2¥/2. This yields similar inequalities for the eigenvalues 3;; of a: |3;;] < 2/* and the
eigenvalues (3., of a™: [Bij.n| < 2™/4. We thus obtain

tr(a”|H2(U, Q)| < b (U)2°%,  [tx(a”|HE(U,Qp))| < b*(U)2"72.
This proves the theorem. O

Remark 3.9. Probably one can get another proof of Proposition 3.8 (and hence Theorem 3.6) using
an approach of [DL]. In that paper the Lefschetz trace formula is established for any endomorphism of
finite order. A remark in Section 11 of the above cited paper (see also [SGA4, Sommes trig., 8.2, p. 231])
says that the results of the paper can be extended to the case of an endomorphism « with the property
a? = Fr.

3.4. Estimates of Betti numbers. As in the previous subsection, we assume that the ground field is
k = T,.

Recall that we consider the variety V' defined by equations J[1-10] (see Subsection 3.2) whose singular
locus is contained in the set S = V' NV (xc). As before, we denote U = V'~ S; it is a smooth irreducible
affine variety invariant under the morphism a. Our aim is to estimate b'(U) and b*(U).

First we deal with b*(U). We want to use the Lefschetz Theorem on hyperplane sections. For technical
reasons we want to use hyperplanes of special type, namely those defined by equations aa + B¢+ v = 0.
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These hyperplane sections are not general, and in order to apply the Lefschetz Theorem, we have to
provide a quasifinite map of the surface V’ onto A2 with coordinates a, c.

The next step is to estimate the Euler characteristic of U. To do this, we represent U as the union of
an open subset U’ and a finite number of curves. We estimate the Euler characteristics of these curves
and of U’ separately, using the fact that U’ is a double cover of a simpler variety. Having in hand bounds
for b1(U) and x(U), we estimate b*(U).

Proposition 3.10. A regular map 7: A® — A? defined as 7(a,b,c,d,v,w,x,y) = (a,c) is quasi-finite on
U.

Proof. Consider the variety W defined in A8 by equations J 3[1 —6].
We have W SV’ and W ~ V' C V(f) C A%, where
fla,c) = c(ac+ a(a + c)(c+ 1)(a® + a®c® + a*c + ac* + ac® + ¢)

(see Subsection 3.2). This means that the coordinates of any point of V'’ (and, in particular, of U), satisfy
the equations J3[1 — 10]. If f(a,c) # 0, the equation J3[1] provides at most six different possible values
for v. The equation J3[2] implies that for each of these six values only one value of x is possible. The
equation J3[3] gives at most two values for d, and all the proceeding equations provide one value for b, y
and w. Hence, for any point (a,c) € A? with f(a,c) # 0, the preimage 7~ !(a, c) is finite in V’ and hence
in U.

Let now A = V(f) C A%, Then 7= 1(A)NU = UA,;, i = 1,...,6 which may be described as follows.
(1) A =UNV(e—1).

According to calculations, 41 = A} U A}, where A} = UNV(c—1)D(a(a +1)(a* + a+ 1)) and
A2=UnNnV(c—1,ala+1)(a®* +a+1)).

The set A} is defined by the ideal L.

L[1]=c+1;

L[2]=(ab+ad+a3+a2) *v4+(ab+a) *v2+(ad+a2+1) ;

L[3]=x+(a3+a2)*v3+(a3+a2+a) *v;

L[4]=(a+1)*d2+(ad4+a2) *dv3+(ad+a) *dv+(a8+ab+ab+ad+a3d+a2+1) *v2+ (a8+ab+a+1) ;
L[5]=(ad4+a2+1)*b+(ab+ad+a2+a)*dv2+(ad+a) *d+(a6+ad) *v3+(ab6+a2+a+l) *v;
L[6]=(a2+a+1) xy+(a2+a+1)*d+(a7+ab+ab+a2) xv3+(a7+ab+ad+a3+a2+a) *xv;
L[7]1=(ad4+a2+1) *w+(a6+ab+a3+a2) *dv2+ (ab+a2) *d+ (a7+ad+a2+a) *v3+(a7+ab+ab+a) *v;

These equations show that for a fixed value of a, if a(a+ 1)(a® +a+ 1) # 0, there are at most four points
in UNn~!(a,1). The set A% is defined by the ideal L1.

Li[1]=a2+a+1 L1[2]=c+1 L1[3]=v+a+1 L1[4]=x+a
L1[5]=d2+da+1 L1[6]=b+da+d L1[7]=y+d+a L1[8]=w+d+1

It follows that 7=1(1,1) = 0; #=1(0,1) = 0; 7~ '(ao, 1), where ag is a root of a® + a + 1, consists of two
points.

(2) Ay =UnV(e)=0.
(3) A3=UnV(a)=0.
(4) Ay =UNV(d+e) =0,
(5) As = UNV(ac+1) = AL U A2,
(5.1) AA=UnNnV(ac+1)N ((a +a+1)(a+1)a). This set is defined by the ideal D.
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D[1]=(a)*c+1;

D[2]=(a3+a2) *v2+(a3+a2+a) *v+1;

D[3]=x+(ad)*v3+(ad)*v;
D[4]=(a6+a2)*d2+(a9+ab) *dv3+(a9+ab) *dv+ (al0+ab+ad+a2+1) *v2+ (al0+a2+1) ;
D[5]=(a3+a)*b+(ab+a3) *dv2+(a) *d+ (ad+a2) *v3+(ad+a2+1) *v;
D[6]=(a)*y+d+(a7+ab)*v3+(a7+ab+a3) *v;

D[7]1=(a2+1) *w+(ab+a3) *dv2+(a) *d+ (ad+a2) *v3+v;

which show that for any point a # 0,1, or ag (a root of a® + a + 1), the set 771(a, 2) contains at most
four points.

(5.2) A2=UnV((ac+1),(a+1)(a®+a+1)a).

This set consists of four points defined by the ideal D1.

D1[1]=a2+a+1 D1[2]=c+a+1 D1[3]=v+a D1[4]=x+1
D1[5]=d2+da+d+1 D1[6]=b+d+a D1[7]=y+da+td+a+l D1[8]=w+data

(6) Ag = U NV(hy), where hi(a,c) = a® + a*c® + a’c + ac* + ac* + c.
A = Ay U AZ U A2, where
Ay =UnV(h)ND(v? +ac® +c? +a% ala+1)(a® +a+1));
A2=UnNnV(h,v* +ac® +c?+a*)ND(a(a+1)(a® +a+1));
Al = UﬂV(hl,v2 +acd +ct+a?ala+1)(a®+a+ 1))

The set A} is defined by the ideal K1.

K1[1]=(a)*c4+(a2)*c3+(a)*c2+(a2+1)*c+(al3);

K1[2]=(a3+a)*v4+(ab+ad+a2)*v2c3+(ab+a) *v2c2+v2c+(a7+a3d+a) *v2+(al0+a8+1) *c3
+(a9+ab) xc2+ (ad+a2+1)*c+(all+a7+ab);

K1[3]=(a2+1) *xv2+(a3+a) *xc3+(a2+1) *xc2+ (ad+a2) *x+(a) *v3c3+(a) *v3c+v3+(ab) *vc3
+(ad+a2) *xvc2+(a) xvc+ (ab+ad+a2) *v;

K1[4]=(a6+ad+a2+1) *x2+(a7+ab)*xvc3+(a8+ad) *xvc2+(a7+a) *xvc+ (a8+a) *xv
+(a3) *v2c3+(a8+ab) *v2c2+(a7+ab+a3) *v2c+(ab) xv2+(all+a3+a)*c3+(al10+a8) *c2
+(ab+a3+a)*c+(al2+al0+ab+ad+1) ;

K1[5]=(al10+a6+ad+1)*d2+(al0+ab+ad+1) *dxc+(al3+all+a9+a7+a3+a) *xvc3
+(al4+al2+ad+a2) *xvc2+(al3+a9+a7+ab) *xvc+(ab6+a4d) *xv+(al3+all+a9+a7+a3)
*v2c3+(ald+al2+a8+ab+a2+1) *v2c2+(al3+all+ab+a3d+a) *v2c+(a8+ad+a2) *v2
+(a13+a9+ab) *c3+(al2+ab) xc2+(ab+a3+a) xc+(ald+al2+a8+ad+a2) ;

K1[6]=(al12+al10+a8+ab+asd+a2) *b+(a3+a) *dxvc3+(a8+a6) *dxvc2+ (ab+a)*dxvc
+(a10+a4+a2+1) *dxv+(ab+a3) *dv2c3+(al0+a8) *dv2c2+(a7+a3) *dv2c
+(al2+a6+ad+a2) *dv2+(a7+ab+a3) *dc3+ (al2+a8+ab+a2) *dc2+ (all+a9+a7) *dc
+(al12+a10+a8) *d+(a8+a2) *xc3+(a7+a) *xc2+(al0+a8+ad+a2) *xc+(al1+a9+ab+a3)
*x+(al3+all+a9+a7+ab+a3) *v3c2+(ald+al2+al0+a8+ab+as) *v3c+(al3+all+a9+a’7
+ab+a3) *v3+(ab+ad+a2)xvc3+(al3+all+a7+ab) *vc2+(ald+al0+a8+ab+a2) *xvc
+(all+a9+a7)*v;

K1[7]=y+bdx+bdv3+bdv+bc3+bc+d3c+(a) *d3+dx2c3+dx2c+(a) *dxvcl12+(a2) *dxvcll
+(a2+1) *dxvc9+(a) *dxvc6+(a) *dxvcd+ (a2) *dxve3d+(a) *dxvc2+ (a2) *dxvc+(a) *dxv
+dvédc+(a) *dv2c12+(a2) *dv2cl11+(a2+1) *dv2c9+dv2c7+(a) *dv2c6+dv2c5+(a2+1)
*dv2c3+dv2c+(a) *dc10+(a) *dc8+(a2) *dc7+(a2) *dcb+(a2) *dc3+(a) *dc2+(a)
*d+x3c2+x3+x2ve2+x2v+(a) *xc21+ (a2) *xc20+ (a2+1) *xc18+(a) *xc17+(a2+1)
*xc16+ (a2) *xcl4+xc12+(a)*xcl11+(a2+1)*xc10+(a) *xc9+(a) *xc7+(a2) *xc6+(a)
*xchb+xcd+ (a)*xc3+(a) *xc+(a) *v3c19+(a2) *v3c18+(a) *v3c17+v3c16+(a2) *v3cl4d
+(a)*v3cl11+(a2+1) *v3c10+(a2) *v3c8+(a) *v3c7+(a2) *v3c6+v3cid+v3c2+(a) *v3c
+(a2) *v3+(a) *vc21+(a2) *vc20+(a) *vc19+vec18+(a2) *vc16+(a) *vcl15+(a2) *vcld
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+(a)*vc13+vc10+(a) *vc9+vch+(a) *veh+(a2) xvcd+ (a2+1) xvc2+(a2+1) *v;
K1[8]=w+bdx+bdv3+bdvc2+(a)*b+(a) *d3+dx2c3+dx2c+(a) *dxvc12+(a2) *dxvcl
1+(a)*dxvc10+dxvc9+(a) *dxve8+(a2) *dxvcb+(a2+1) *dxve3+(a) *dxvc2+ (a2) *dxvce
+(a) *dxv+(a) *dv2c12+ (a2) *dv2c11+(a) *dv2c10+dv2c9+ (a) *dv2c8+(a) *dv2c6
+(a2) *dv2c5+dv2c3+dv2c+(a) *dc10+ (a2) *dc7+dc5+(a2+1) *dc3+ (a2) *dc
+(a) *d+x3c2+(a) *xc21+(a2) *xc20+(a) *xc19+xc18+(a2) *xc16+(a) *xc15+(a2)
*xcl14+(a)*xc13+(a)*xc11+xc10+(a2) *xcb+(a2) *xc2+x+vh+(a) *v3c19+(a2) *v3c18
+(a2+1) *v3c16+v3cl4+(a)*v3c13+(a2+1) *v3c12+(a) *v3c11+v3c10+(a) *v3c9+v3c8
+(a) *v3c7+v3c6+(a) *v3ch+(a) *v3c3+(a2) *v3c2+(a) *v3c+(a2+1) *v3+(a) *vc21
+(a2) *vc20+(a2+1) *vc18+vcl16+vcid+(a2+1) *vc10+(a2) *vc8+veb+(a) *veh
+(a) *vc3+vc2+(a) *ve+v;

This shows that each point (a, ¢) satisfying f(a,c) = 0, v?+ac3+c*+a? # 0 and a(a+1)(a?+a+1) #0
has at most four preimages in U;. The set A2 is defined by the ideal K2.

K2[1]=(a)*c4+(a2)*c3+(a) *c2+(a2+1) *c+(a3) ;

K2[2]=v2+(a) *c3+c2+(a2);

K2[3]=(ad+1)*x2+(ab) *xvc3+(ab+ad) *xvc2+ (ab+al3+a) *xvc+(ab+ad+a2) xxv
+(a3+a) *c3+(ab+a2) *xc2+ (a3+a) xc+(a2+1) ;

K2[4]=(a9+a7+a3+a)*d2+(a9+a7+a3+a) *dxc+(al2+a8+a2) *xvc3+(al3+a3) xxvc2
+(al12+al10+a6) *xvc+(ab) *xv+(al2+al0+a8+ab+ad+a2) *c3+(al3+all+a7+ab) *c2
+(a6+1)*c+(all+ab);

K2[5]=(a12+a10+a8+a6+asd+a2) *b+(a3d+a) *dxvc3+(a8+a6) *dxvc2+ (ab+a) *dxvc
+(al10+ad+a2+1) *dxv+(all+a7+a3) *dc3+(al2+al0+a8+ab+ad+a2) *dc2
+(all+a7+a3) *dc+(al2+a8+ad) *d+(a8+a2) *xc3+(a7+a) *xc2+(al0
+a8+ad+a2) *xc+(all+a9+ab+ald) xx+(ab+ad+a2) *vc3+(a9+a3) *vc2
+(al10+a8+a6)*vc+(all+ad+a7) *v;

K2[6]=(ad4+a2+1) *xy+(ad+a2+1)*xdc+(a) *xc3+(ad+a2) *xc2+(ab) *xc+(ab+ad+a2+1) *xx
+(ab+a3+a)*xvc+(ab+1) xv;

K2[7]=(al1+a9+a7+ab+a3+a)*w+(a3+a) *dxvc3+(a8+a6) *dxvc2+(ab+a)*dxvc+(al0
+ad+a2+1) *dxv+(all+a7+a3) *dc3+(al2+al0+a8+ab+ad+a2) *dc2+(all+a7+a3) *dc
+(al2+a8+ad)*d+(al0+a8+ab+ad+a2+1) *xc+(all+a9+a7+ab+a3+a) *x+(ab+ad+a2)
*vc3+(a9+a3) xvc2+(al0+a8+ab) xvc+(al3+ab+a3) *v;

It follows that in this case the preimage of each point contains at most four points as well.

The set A3 consists of 54 points defined by the ideals W1, W2, W3, W4, H1, H2 and H3.

W1[1]=c3+c+1 W2[1]=c3+c+1
Wi[2]=a+1 W2[2]=a+1
Wi[3]=v+1 W2[3]=v+1
W1[4]=x+c2+c W2 [4]=x+c2+c
W1[5]=d+c2+1 W2 [5]=d+c
W1[6]=b+c2+c W2 [6]=b+c2+c+1
W1[7]=y+c+1 W2 [7]=y+c2+c
W1[8]=w+c2 W2[8]=w+c2+1
W3[1]=c3+c+1 WA [1]=c3+c+1
w3[2]=a+1 W4 [2]=a+1
W3[3]=v+c2 W4 [3]=v+c2
W3[4]=x+c Wa[4]=x+1

W3 [5]=d2+dc2+1 W4 [5]=d2+dc+c
W3 [6]=b+d+c W4 [6]=b+dc
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W3 [7]=y+dc+1
W3[8]=w+d+c2+1

Hi[1]=a2+a+1
H1[2]=c3+c2a+c2+ca+a+1
H1[3]=v+c2a+c2+1
H1[4]=x+c2a+c2+a+1
H1[5]=d2+dc2a+dca+da+c2a+c2
H1[6]=b+dc2+dc+da+d+c2a
H1[7]=y+dc+a
H1[8]=w+dc2a+dca+d+ca+c+1

H3[1]=a2+a+1
H3[2]=c3+c2a+c2+ca+a+1
H3[3]=v+c2a+ca+c+1
H3[4]=x+c2a+c2

H3[5]=d2+dc2a+dc+da+c2a+c2+ca+c

H3[6]=b+dc2a+dc2+dca+c2a
H3[7]=y+dc+c2a+catcta
H3[8]=w+dc2+dca+dc+ca+c+a
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W4 [7]=y+dc+c
W4 [8]=w+dc

H2[1]=a2+a+1

H2[2] =c3+c2a+c2+ca+a+1
H2[3]=v+c2a+c2+1

H2[4]=x+ca+1

H2[5]=d2+dc2a+dc+c
H2[6]=b+dc2a+dc2+dca+da+c+a+l
H2[7]=y+dc+c2+cata+l

H2[8] =w+dc2+dca+dc+da+d+c2a+c2+ca+tc+a

Thus, any point in A? has a finite (maybe, empty) preimage. Hence 7 is quasi-finite. (]

Further on we shall consider the following sets:

V' C A8, defined by the ideal J;

W C A8, defined by the ideal J3;

U=V~ V(xc) CAS;
U = V'~ V(f) C AS;

W C A* with coordinates (a, ¢, v, z), defined by the ideal (J3(1), J3(2)).

L=WnV(f) CAY
Z =W~ LcCA%

Y =V (J3[1]) N D(f) C A® with coordinates (a, ¢, v).

These affine sets are included in the following diagram:

WoV' >U>U

ﬂll ,l,ﬂ—l
w D Z

L

Y.

The inclusion U D U’ follows from computations: we have V' NV (z) C V(f)NV’. Themap m1: U’ — Z
is a double unramified cover. This follows from the structure of equations J3[1],..., J3[6]: all the branch

points are contained in the set V(f).

The map 7y is an isomorphism since x appears linearly in the

equation J3[2] and its coefficient does not vanish in U’.

Proposition 3.11. b'(U) < 675.

Proof. This estimate follows from the Weak Lefschetz Theorem proved by N. Katz ([Kal, Cor. 3.4.1]).

Indeed, we have:
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e an algebraically closed field of characteristic 2 < ¢;

e U, a separated k-scheme of finite type which is a local complete intersection, purely of dimension
2>0

e U — A? a quasi-finite morphism (see Proposition 3.10).

Then, for a constant Qg-sheaf F on U, there exists a dense open set &/ C A3 such that for any
(a, B,7y) € U the restriction map
HY(U,F)— H' (Un{aa+ Bc+v=0},i*F)
is injective (¢ denotes the embedding of the hyperplane section into U).
Denote:
S1=UNV(aa+ Be+7);
S=8,nU’ =U'NV(aa + fec+7v) C Sy
S=YNV(aa+pBc+vy)CY.

Since U’ is a double unramified cover of Y, S is a double unramified cover of S. The curve S is defined
in A% with coordinates (a,c,v) by V(J3[1],aa + Bc+~) N D(f) with

J3[1]=(a8+a6c2+adcd+a2c6) *v6+(a8+a7c3+abc2+abcl3+adcd+a3c7+a2ch
+ac7)*v4+(a7c3+ab6c2+abcb+abc3+al3c7+a3ch+a2c6+a2cd+ac9+c6)
*v2+(ac9+acb+c8+c4)=0;

Let S be the projectivisation of S in P3. For a general triple («, 3,7) it is an irreducible complete
intersection of degree d = 14. By [GL, Cor. 7.4], we have

bH(S) < (d—1)(d —2) < 156.
Let B be the union of the plane at infinity with the closure of the set V((aa + Be+ ) f(a, c)) Since

deg f = 11, we have deg B = 13. Thus SN B contains at most 14 - 13 = 182 points. Hence b'(S) <
156 + 182 = 338. Since S is a double unramified cover of S, b'(S) = 2b1(S) — 1 < 675. Since S C Si,

b1(S1) < b1(S) < 675. a
Proposition 3.12. The Euler characteristic of L satisfies x(L) < 71430 < 217.

Proof. The set L = W N 'V(f) cousists of several components. According to computations, the list of
components is as follows:

. = V(a,c); dim Fy 2, x(F1) = 1
F, = V(vc); dmF, = 2, x(F) = 1
F; = V(v-1c¢); dimFs; = 2, x(F3) = 1
F, = V(a—1,c—1); dmFy = 2, x(Fy) = 1
E = V(ac—1,v); dmE = 2, x(B) = 0
G = V(c—-lLa?+c+av+cv+v?+v), dmG = 2, x(G) = -3
Ci = V(z,a,c?+cv+1), dimC; = 1, x(C1) = 0
Cy = V(ie—1,v,z), dimCy; = 1, x(Ce) = 1
Cy = V(Iy), dimCs = 1,

H = V(L) dimH, = 2,

Hy V(Iz), dim H, 2,

where
I3 = (c —1, a*v’z +a?v+v¥r +av+axr+v+ x, a*z? + a®vx® + a®v? + az? + a* + a®vx + vad + ave +
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ax? +a?+vx+ 1, av?zt + vz +vie? + v2at + avt + avad + vt + oz + a2a? +vad + 2t + ave + v + $2>,
L = <c3—|—02v+c2+av+cv+v2,acv+ac+02+av—|—v2+a+c+v,a20+a2+ac+cv+v2+c>,
and

I = (ac20+63v+03+02v+a1)2 +cv2+cv+a,c4+acv+020+ac+cv+v+ 1,a3v2 + a?v® + acv® +
Av + a®v? + acv? + cv?).

Let us explain how the Euler characteristics were computed. We have x(F;) = 1,7 = 1,...,4 because
the F;’s are just affine spaces. E is isomorphic to (A \ {0}) with coordinates a and x respectively, so
X(E)=1-(1-1)=0. The component G is the direct product of A! with coordinate z and a curve T
which is a ramified covering of A! with coordinate a. For a fixed point (a,c,v) in T' we have ¢ = %, and
v is defined by the quadratic equation

v?(a® +a) +v(a® +a® +a)+1=0.

It follows that if @ # 0,a # 1,a? + a + 1 # 0, there are precisely two points in 7' with this value of a.
There are no points with a = 0 and precisely one point for each value @ = 1 or a® + a + 1 = 0. Since the
Euler characteristics of A! without 4 points is —3, we have x(G) = 2(-3) + 3 = —3.

The curve C is isomorphic to A \ {0} with coordinate c: v = (1 + ¢?)/e, x(A! < {0}) = 0.
Oy is AL, x(A)) = 1.

In order to estimate the Euler characteristics of C3, Hy, Ho, we use the following theorem of Adolphson
and Sperber:

Proposition 3.13. [AS, Th. 5.27], [Ka2] If an affine variety V is defined in AN by r polynomial equations
all of degree < d, then

(3.10) Ix(V)| <2" Dy, (1,144d,...,1+d),

r4+1

where Dy .(x0,...,2.) = Y. XW is the homogeneous form of degree N in x,...,z, all of whose
[W=N
coefficients equal 1.

According to formula (3.10),
IX(C3)| < 23D35(1,8,8,8) < 44232 < 216
IX(H1)| < 23D55(1,4,4,4) < 5992 < 213
IX(Hz)| < 22Ds5(1,6,6,6) < 19160 < 21°.

The pairwise intersection of these components is a union of 16 lines and 10 points. The triple intersections
contain 3 lines and 3 points. No four of these components intersect. Thus, |x(L)| < 5+ 3 + 44232 +
5992 + 21224 4 26 + 6 = 71488 < 2'7. O

Proposition 3.14. »*(U) < 222

Proof. We consider two cases:
(I) x(U) <0. Then 1 —bY(U) + b*(U) <0 and b*(U) < b'(U) < 675.

(IT) x(U) > 0. We first find |(x(U")|. Since U’ is a double cover of Z, we have |x(U")| = 2|x(Z)|. Since
Z = W N\ L, we have x(Z) = x(W) — x(L). By formula (3.10), we get |x(W)| < 22D4(1,15,15) <
1069324. In view of Proposition 3.12, we have |x(L)| < 71488. Hence |x(Z)| < |x(W)|+|x(L)| < 1140812,
and therefore |x(U’)| < 2281624 < 222. On the other hand, x(U) = x(U’) + x(U ~ U’). In order to find
x(U), we have to evaluate x(U \ U’). Let N = U[\'V(f). Since N is the intersection of the smooth
affine surface U with the hypersurface V(f), all of its irreducible components N; are curves (that is,
dim N; = 1). This follows from [Sh, Th.5, p.74], and is confirmed by calculations. Since by Proposition
3.10 the projection m: U — A? is quasi-finite, none of N; is mapped into a point. Hence m(N;) C A?
is a curve. This curve does not meet the lines V(c) and V(a) because V(a) NU = (. This means that
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the ring O(m(N;)) contains the non-vanishing function ac. If ac = const on 7(N;), then 7(N;) has two
punctures at infinity. If ac # const, then the normalisation of w(N;) has at least two punctures, as does
any curve having a non-constant and non-vanishing regular function. Thus x(mw(N;)) < 0.

Let k denote the degree of the map N; — w(N;). By Hurwitz’s formula, x(N;) = kx(7(N;)) — s, where
5 > 0 is the branching number. It follows that

X(N;) < kx(m(N;)) <0.

It follows that
(V) =D x(Vi) - T,

where T'= 3 ¢y, (k(z) — 1) > 0, and k(z) stands for the multiplicity of a point z € [JN;. Hence

X(UNi) = x(N) <0;

x(U) = x(U") + x(N) < x(U') < 2281624,
and, therefore,
VA(U) = x(U) + b1 (U) < 2282299 < 222,

Corollary 3.15. Letn > 48, ¢ =2". Then V, has an F4-point.

Proof. On plugging the estimates of Propositions 3.11 and 3.14 into formula (3.3), we see that
#Fix(U,n) > 0 as soon as n > 48. This proves the corollary. O

3.5. Small fields. The purpose of this section is to study the fixed points and also numbers of fixed
points of the operator a™ on the variety V' given by the equations J[1],...,J[10]. Let k denote the
algebraic closure of Fy and N,, the number of fixed points of a™ on V/(k). As explained before, if n is
even (n = 2k) then N, is just the number of points of V’ in the field Fyr. We are interested here in the
numbers N, for odd primes p.

We first give a table of the numbers N,, for 1 < n < 23.

n| N, n N, n N, n N,
1 9 516 17| 130084 25 33545220
2 8 10 | 1088 18 263504 26 67068464
3| 12 11| 2332 19 523260 27 | 134231772
4| 16 12| 3904 20 | 1050016 28 | 268394688
5| 20 13| 8372 21| 2102420 29 | 536948340
6| 56 14 | 16416 22| 4198752 30 | 1073676416
7| 140 15 | 32012 23 | 8378348 31 | 2221330252
8 | 240 16 | 65360 24 | 16788720 32 | 4295197328

TABLE 5. Fixed point numbers

We shall explain now the strategy for computing the numbers in Table 5. From the defining polynomials
for V' it can be read off that the map v: V' — A? which maps a point to its coordinates (a, ap) has finite
fibers. Some special features of MAGMA make it then possible to count the number of elements in the
fiber of every point of A2 over a given finite field.
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From the above table we have tried to understand heuristically the zeta-function of « acting on V'.
The zeta-function Z(«,T) of the operator « is defined by

Z(a,T): exp( Z% )

n=1

It is known to be a rational function and we find that it agrees with the polynomial
(1-2T)(1 —T)(1 —T?)°(1 4+ T?)?(2T* + 2T% 4+ 1)(4T® 4 2T* + 1)(2T% 4+ 2T + 1)(8T® +4T° + T + 1)

up to terms of degree T32. Note that the absolute values of the zeros of this polynomial are equal to 1,
1/2, 1/v/2, or 1/+/2, as general theory predicts.

The operator « also acts on the singular set S = V' NV (cz). We have computed that the correspond-
ingly defined zeta-function Zg(a,T) agrees with (1 — 272)3/[(1 — T?)3(1 + T?)] up to terms of order
T4,

These two formulas imply the statement in Remark 1.12 above.

The data in Table 5 are not enough to close the gap between Corollary 3.15 and Theorem 1.2. We
have used our method of computation to exhibit, for each 3 < p < 47, a fixed point of o acting on V’.
In the next table we give such points by their coordinates a, b, ¢, d, v, w, x, y in the field For. Here t is
a primitive element of Fo» and MP is its minimal polynomial over Fo. This finishes the proof of Theorem
1.1. Although it is quite difficult to find fixed points of o2, it is easily checked, given the coordinates of
point, whether it is a fixed point or not.

p=3, MP=t34+t+1

a=1, b=t4, c=t, d=1t5, v=1, w=t2 x =t y =t3.
p=5 MP=ts+t2+1

a=1t% b=0, c =t d=1, v=t9, w =0, x=t19, y=1.
p=7, MP=t"+t+1

a=t5, b=t3, c=1t5, d =11, v=t80, w =148, z=1t" y = t59.
p=11, MP=t14+¢2+1

a=13 b = $228 c = ¢151 d=13 v = ¢192 w = 263 o — 1476 y = 1512,
p=13, MP=tB 4+t +3+t+1

a=19, b=2129 o — 46077 d=¢T814 4 = 41152 ) — 42209 © = 7902 y = 890,

p=17, MP=t74+¢3+1
a=15, b=139028 . _ ;30333 d = 16060 4 — 42560 o, _ 459544 x = 64118, y = 96318,

p=19, MP=¢¥94+t5 42+t +1
a=t, b= 45681 o 4503015 g _ 48107 v=t1024 gy = 3115801 o 4237526, 4437263
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p=23, MP=t34+t>+1

a=1t,

b=t22+t21+t19+t16+t15+t12+t10+t7+t4+t,
C=t21+t20+t17+t16+t13+t12+t11+t10+t6+t5+t3+t,
d=t22+t21+t20+tlg+t16+t14+t13+t12+t10+t9+t6+t5+t2,
v=t22+t21+t20+t19+t17+t15+t13+t12+t10+t7+t5+t4,
w:t22+t18+t15+t13+t12+t8+t7+t5+t,

$:t21 +t19 +t18+t15+t13+t11 +t9+t8+t6+t4+t2,
y:t19+t18+t15+t9+t7+t6+t3+t2+t.

p=29, MP=1t>4+t>+1

a=1t2+t,

b:t28+t27+t26+t25 +t24+t23+t22 +t19—|—t16+t13+t12+t9+t8+t7+t6+t5+t4+1,
C:t25 +t23+t20+t19+t17+t16+t15 +t14+t13+t9+t+1,
d=t26+t24+t23+t22 +t20+t17+t16+t13+t12+t6,
v=t28+t26+t20+t18+t17+t11+t10+t8+t4+t3+t,
w=t23+t19+t17+t16+t15 +t14+t13+t12+t11 +t8+t6+t3+t2,
1’:t26+t25+t19+t16+t13+t11 +t9+t8+t7+t6+t4+1,
y:t27+t24+t23+t22+t21+t15+t13+t9+t8+t6+t5+t4+1,

p=31, MP=¢!413+1

a:t3,

b=t30+t27+t25+t23+t21 +t20+t18+t17+t16+t15+t14+t12+t11 +t9+t8+t5+t3+t,
C=t27+t24+t20+t19+t18+t16+t14+t12+t10+t9+t8+t7+t5+t4,

d:t23+t21 +t20+t19+t13+t8+t7+t6,

v =12+ 10 419 442 4 ¢,

w:t29+t24+t23+t21 +t20+t17+t16+t15+t11 +t9+t4-‘rt3+t2+t,
x:tSO+t28+t26+t25+t24+t20+t18+t17+t16+t15+t11 +t9+t8+t7+t5-‘rt,
y:t30+t29+t28+t19+t17+t16+t13+t11+t10+t8+t6+t5+t4+t3+t.

p=37, MP=83T4+0+t44+34+12+t+1

a=1t?+1t,

b:t36+t34+t30+t29+t28+t27+t26+t25 +t23+t21 -‘rt17+t14+t11 +t10+t7+t4+t3+t2+t+1,

e =30 1 ¢35 1 ¢33 4 32 4 431 1 429 4 419 4 414 4 1l 4 410 4 40 4 4T 4 g2

d = 36 4 34 4 ¢32 4¢3l 4 427 | 426 4 424 | 423 4 422 4 420 4 419 4 418 4 416 4 412 4 410 4 49 4 48 4 4T 4 46
3+t 41,

vo= 3% 4 ¢33 431 4 430 4 429 4 428 | 427 4 426 4 419 4 418 4 417 4 416 4 414 4 413 4 410 4 48 4 4T 4 46 4 45
P32t 1,

’u}:t36+t35+t34+t33+t32 +t29+t26+t25+t20+t19+t18+t17+t15 +t14+t12+t10+t8+t7+t6+
5+ttt + e+ 1,

x:t36+t31 +t29+t28+t27+t24+t21 +t19+t18+t16+t15+t14+t12+t10+t9+t8+t3+t2+t,

y:t35+t33+t32+t27+t26+t25+t24+t23+t19+t18+t15+t11 +t10+t9+t7+t4+t3+t+1.
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p=41, MP=t*4+¢3+1

a=1t,

b=t39+t37+t36+t35+t34+t33+t30+t28+t26+t24+t23+t20+t19+t18+t17+t16+t15+t13+t11+
t10 449 16 + 43 442 4t 4 1,

C=t40+t38+t36+t33+t32 +t31+t29+t28+t27+t26+t24+t23+t22+t19+t18+t14+t12+t10t9+
0 +¢7 + 13 4+ 1,

d:t40+t39+t37+t35 +t34+t30+t28+t27+t23+t21 +t19+t18+t15 +t14+t13+t11 +t9+
17+ tt 4+ 12,

’U:t38+t37+t36+t35 +t34+t32 +t31 +t29+t26+t23+t21 +t20+t18+t17+t15 +t14+t13+t12+t11+
$10 447 446 14t 143 142 1g,

w:t40+t37+t35+t33+t32 +t31 +t30+t29+t28+t27+t26+t25+t24+t20+t19+t18+t16+t14+t13+
19 +18 7 416 4t 12 41,

1’=t38+t36+t34+t33+t32+t29+t21+t20+t18+t13+t12+t7+t6+t2+t+1,

y:t40+t39+t35+t26+t23+t22+t19+t17+t16+t15+t14+t13+t7+t5+t4+t2.

p=43, MP =% 416 ¢+ 4¢3 4+1

a=t3,

b:t42+t39+t37+t32 +t31 +t30+t29+t26+t23+t19+t18+t17+t10+t7+t6+t5+t4+1,

c = t40 +t39+t38+t36+t35 +t34+t33+t32+t31 +t30+t26+t23+t22+t21 +t19+t16+t14+t13+t12+
19+t 13 12+ 1,

d=t39+t38+t37+t36+t35+t34+t29+t28+t27+t22+t21 +t20+t19+t18+t17+t16+t13+t9+t7+
0+t 43 12 + 41,

’U:t40+t37+t35+t33+t31 +t30+t26+t17+t16+t15 +t11 +t8+t4+t+1,

w = t41 +t39+t38+t37+t36+t31 +t29+t28+t24+t21 +t18+t17+t14+t9+t8+t7+t5+t4+t3+1,

r = t41 +t39+t34-‘rt33+t32-‘rt29+t25+t24+t20+t18+t17+t16+t15+t12+t11 +t10+t9+t7+t6+
4ttt 1,

y:t41 +t40+t38+t37+t35+t34-‘rt33+t30+t29+t28+t27+t26+t24+t19+t18+t16+t15 +t12+t11-‘r
19+ 18 4 tt 13+ 12+t

p=47, MP=t*"+15+1

a=t24+t+1

b=t46+t44+t43+t41 +t40+t39+t37+t36 +t35+t34+t27+t25+t24+t23+t22+t20+t19+t17+
t16+t14+t13+t12+t11 +t9+t8+t7+t6+t5+t2,

C:t40+t33+t31 +t30+t29 +t26+t25+t24+t23+t21 +t19+t16+t15+t14+t11 +t10+t9+t8+t7+t6,

d:t44+t42+t41 +t39+t36+t35+t31 +t27+t26+t24+t20+t19+t17+t16+t15+t13+t9+t7+t5+
t4 12 +t,

’U:t44+t41 +t40+t38+t37+t34+t33+t32+t31 +t28 +t27+t26+t25+t23+t22 +t18+t17+t16+t12+
O+ + 17T +t0 45 412+ + 1,

’u}:t45+t43+t42+t41 +t39 +t38+t36+t35+t34+t32+t30+t24+t23 +t21 +t20+t16+t12+t9+t5+
th 413 + 12 +

x:t46+t45+t44+t41 +t39+t37+t35+t33+t31 +t30+t29+t27+t26+t25+t21 +t20+t18+t17+t11+
948 447 5 + 45 + 43 + 42

y:t46+t42+t41 +t40+t39+t38+t37+t35+t34+t33+t32+t31 +t30+t28+t26+t25+t22 +t15+t13+
4410 449 446 445 44 42,

TABLE 6. Fixed points in Fa»

41
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4. APPENDIX

4.1. A variant of Zorn’s theorem.
In this appendix we prove

Proposition 4.1. Let G be a finite group, and let w = w(z,y) be a word in two variables such that: 1)
if w(z,y) =1 in G then G = {1}; 2) the words x and w(x,y) generate the free group Fy = (x,y). Then
G is nilpotent if and only if it satisfies one of the identities [w(x,y),x,x, ..., x] = 1.

Proof. Necessity. Let G be a nilpotent group of class n. Since the element e, (z,y) = [w(z,y),z,..., ]
lies in the nth term of the invariant series, e,(x,y) is an identity.

Sufficiency. We want to prove that any G satisfying the identity e,(x,y) = 1 for some n is nilpotent.
Assume the contrary.

Suppose that n = 1. Then according to assumption (1) of the proposition, the group G is trivial.
Let n > 1. Let I denote a minimal counterexample, that is, a non-nilpotent group of the smallest order
satisfying the identity e,(z,y) = 1. Obviously, all subgroups of T" are nilpotent. Then I" is a Schmidt
group, that is, a non-nilpotent group all of whose proper subgroups are nilpotent (see [Sch], [Re] for the
description of these groups). In particular, the commutator subgroup I' is the unique maximal Sylow
subgroup in I'. Since I is nilpotent, it contains a non-trivial center Z(I"). Take a nontrivial a € Z(I").
For any element a ¢ T there exists y € G such that w(z,y) = a (condition (2)). Consider the sequence
[a,z,x,...,2] = [w(z,y),z,x,...,2] = en(x,y). There exists n such that [w(z,y),z,z,...,2] = 1. Let
n denote the smallest number satisfying this equality, and let b = [w(z,y),z,z,...,2] = en—1(z,y).
Clearly, b € Z(I"). Moreover, [b,z] = e, (z,y) = 1 and hence b is a nontrivial element from Z(I"). Take
[ = I'/Z(I'). Then the order of ' is less than the order of I', hence T is nilpotent. Therefore I is
nilpotent. Since e, (z,y) is an identity in I', we get a contradiction.

The proposition is proved. O
4.2. Pro-finite setting.

4.2.1. Pseudo-varieties of finite groups. A wvariety of groups is a class C of groups defined by some set of
identities T (that is, G € C if and only if for every u € T the identity u holds in G). Birkhof’s theorem
says that C' is a variety if and only if C' is closed under taking subgroups, homomorphic images, and
direct products. To work with classes of finite groups (which cannot be closed under taking infinite direct
products), one needs a more general notion.

Definition 4.2. A pseudo-variety of groups is a class of groups closed under taking subgroups, homo-
morphic images, and finite direct products.

By Birkhoft’s theorem every variety of groups is a pseudo-variety. We are interested in pseudo-varieties
of all finite groups, all finite solvable groups, and all finite nilpotent groups.

Let FF = F(X°) be a free group with countable set of generators X°. Consider a sequence of words
U = UL, U,...,Up,... 0 F. The sequence u determines a class of groups V,, by the rule: a group G
belongs to V,, if and only if almost all elements u are identities in G. The class V,, is a pseudo-variety. It
turns out that this construction is universal:

Theorem 4.3. [ES] For every pseudo-variety of finite groups V there exists a sequence of elements
u: N—F, u=uy,u,...,Un,... sSuch that V. =1V,.
We shall consider a special class of sequences.

Definition 4.4. Let X be a finite set. We say that a sequence of elements (not necessarily distinct)
U = U, U, ..., Upn,... of the free group F(X) is correct if given any group G, as soon as an identity
u, = 1 holds in G, for all m > n the identities u,, = 1 hold in G, too.
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As above, a correct sequence u defines a pseudo-variety of groups V by the rule: G € V if and only if
some identity u, =1, u, € u, holds in G.

Remark 4.5. If u is a correct sequence defining a pseudo-variety V' and v is a subsequence of u, then v
is also correct and defines the same pseudo-variety V.

Let F = F(z,y) and
(41) €1 = [90,?}]’ Entl1 = [enay ]a s

This sequence is correct and defines the pseudo-variety of all finite Engel groups. According to Zorn’s
theorem [Zo], this pseudo-variety coincides with the pseudo-variety of all finite nilpotent groups.

Our main sequence of quasi-Engel words
(4.2) u=w=a2y 2, U1 = [zupr Lyuny ],

is also correct, and according to Theorem 1.1 it defines the pseudo-variety of all finite solvable groups.

4.2.2. Residually finite groups.

Definition 4.6. We say that a group G is residually finite if the intersection of all its normal subgroups
of finite index H,, « € I, is trivial.

Define a partial order on the set I by: « < g if and only if Hg C H,. The intersection of two normal
subgroups of finite index is also of finite index, and therefore for every «, 8 € I there is v € I such that
a <7, B <. Thus the set I is directed.

Denote G, = G/H,. If a < (3 then there is a natural homomorphism ¢? : G — G,. If gHp is
an element of Gg then its image in G, is gH,. Let G be the direct product of all G,. Then there
is an embedding G — G which associates to each g € G the element § = (¢Ha)aecr. Hence G can be
approximated by finite groups Gy, that is, if f, g are distinct elements of G then there is v such that f,,
and g, are distinct elements of G,.

A group G is regarded as a topological group, with the topology defined by the system of neighbour-
hoods of 1 consisting of all normal subgroups of finite index H,. The system of neighbourhoods of an
element g € G is given by the cosets gH,. The group G is also a topological group. To define the topol-
ogy, consider the projections 7, : G — G4. Let kerm, = U,. Then G /U, is isomorphic to G, = G/H,,.
For every g € G the element g lies in U, if and only if g € H,. The system of neighbourhoods of 1 in
G consists of all finite intersections of normal subgroups U,. This defines the Tikhonov topology on G.
Since all groups G, are finite, the group G is compact.

Let g1,...,9n, ... be a sequence of elements of G. As usual, we say that this sequence tends to 1 if for
every neighbourhood H,, there exists a natural number N = N(«) such that for all n > N the element
gn lies in H,,.

Definition 4.7. Let F' = F(X) be a free group. We say that a sequence u = u1,..., Uy, ... of elements
of F identically converges to 1 in a group G if for any homomorphism p: F' — G the sequence p(u) =
w(ug), ..., mu(uy),. .. tends to 1 in G. In this case we write u =1 in G.

Proposition 4.8. Let X be a finite set. If a sequence uy, ..., Un, ... identically converges to 1 in G then
for every neighbourhood H, there exists N = N(«) such that all u,,n > N, are identities of the group
G/H,.

Proof. Take a homomorphism p: F — G, and let u°: G — G/H, be the natural projection. Then
v = p®u is a homomorphism F — G/H,, and every homomorphism v: F — G/H, can be represented
in this way. Since both G/H, and X are finite, the set of different v’s is also finite. Denote them

{vi,..., v}
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Define an equivalence relation on the set of all homomorphisms p: F — G by: u1 = po if 1% = pupus.
For an arbitrary u € F we have u(u) € H,, if and only if u°u(u) = 1. Thus, if 1 = po then for every u € F
we have 1 (u) € H,, if and only if po(u) € H,. Indeed, let pq(u) € Hy. Then pOuy(u) =1 = pPus(u) =1,
and pg(u) € Hy.

For every v;, i = 1,...,k take u; such that u°u; = v;. Consider the equivalence classes [u1], .. ., [u]-
Each pu: F' — G belongs to one of these classes. Since the sequence uy, ..., u,,... identically converges
to 1in G, for every u: F — G there exists N = N(a, ) such that p(u,) € H, for n > N. Let Ny be the
maximum of N(a, u;), i =1,...,k. If n > Ny then p;(u,) € H, for every u;. Since every p is equivalent
to some p;, we have p(uy,) € H, for every p. This means that v(u,) =1 for every v : F — G/H,,. Thus
the element w,, defines an identity of the group G/H,. O

4.2.3. Pro-finite groups. We now focus on pro-finite groups, with a goal to establish a relationship with
pseudo-varieties and give another reformulation of our main result. Generalities on pro-finite groups can
be found in [RZ], [All], etc. We recall here some basic notions.

Let V be a pseudo-variety of finite groups. Given a group G, consider all its normal subgroups of finite
index H, such that G/H, = G, € V. If the intersection of all these H, is trivial, we say that G is a
residually V-group. This is a topological group with V-topology (the subgroups H, as above are taken
as the neighbourhoods of 1).

Let G be the direct product of all G,. Denote by G a subgroup in G defined as follows: an element
f € G belongs to G if and only if for every a and (3 such that Hg C H, the equality ©2(fz) = fa holds.
Denote fo, = goHo. Then
Po(95Hp) = gaHa = ggHa .
Recall that ¢ are natural homomorphisms.

The group G turns out to be the completion of G in its V-topology [ESt].

Such a group G is called a pro-V -group. If V is the pseudo-variety of all finite groups, G is called
a pro-finite group. Thus in the class of all pro-finite groups one can distinguish subclasses related to
particular pseudo-varieties V.

A free group F = F(X) is residually finite. Take all normal subgroups of finite index in F. They
define the pro-finite topology in F'. Denote by F' the completion of F' in this topology. This group is a
free pro-finite group (see, for example, [RZ]).

Indeed, if G is the pro-finite completion of an arbitrary residually finite group G, then every map
e X — G induces a homomorphism u: F — G which turns out to be a continuous homomorphism of
topological groups and therefore induces a continuous homomorphism /i: F—aG.

Another approach to free pro-finite groups is based on the idea of implicit operations (cf. [All], [Al2],
[AV], [MSW], [We], etc.). This approach has a lot of advantages but we do not use it since it needs
additional notions which are not necessary for our aims.

Definition 4.9. Let f € F. The expression f = 1 is called a pro-finite identity of a pro-finite group G
if for every continuous homomorphism fi: F' — G we have p(f) = 1.

Definition 4.10. (see also [AV], [All]) A variety of pro-finite groups (for brevity, a pro-variety) is a class
of pro-finite groups defined by some set of pro-finite identities.

An analogue of Birkhoff’s theorem for pro-finite groups says that a class of pro-finite groups is a pro-
variety if and only if it is closed under taking closed subgroups, images under continuous homomorphisms,
and direct products. This implies that for an arbitrary pseudo-variety V of finite groups, the class of all
pro-V-groups is a pro-variety. The converse statement is also true. For any pro-variety C' there exists a
pseudo-variety of finite groups V' such that the class of all pro-V-groups coincides with C. In the case
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where V' is a correct pseudo-variety of finite groups (that is, is defined by a correct sequence), one can
construct identities defining the pro-variety of pro-V-groups in an explicit form.

Let X be a finite set. Let u = uy,...,un,... be a sequence of elements of a free group F' = F(X).
Since F' is a compact group, there exists a convergent subsequence v = vy,..., Uy, ... of u.

Proposition 4.11. Let v = v1,vs,...,Vn,... be a convergent sequence of elements of F with limv,, = f.
Let G be a pro-finite group. Then the identity f = 1 holds in G if and only if v =1 in G (that is, v
identically converges to 1 in G, see Definition 4.7).

Proof. First of all the sequence g1, ..., Jn,... converges to 1 in G if and only if g1,...,gn,... converges
to 1lin G.
Let the identity f = 1 be fulfilled in G. Then
ﬁ(f) = Hmﬁ(’vn) = Hmlu’(vn) =1.
Thus, lim x(v,) = 1 in G. This means that v = 1 in G. Conversely, let v = 1 in G. Then for every

w: F'— G the sequence u(v) converges to 1 in G. The sequence u(v) converges to 1 in G. Using

lim 7i(2,) = lim (v, ) = 1 = fi(f),

we conclude that fi(f) = 1 for arbitrary p. This means that the identity f = 1 holds in G. O
Let V be a pseudo—variety of finite groups defined by a correct sequence u = uy, ug, ..., Uy, ..., and let
v =01,V2,...,Un,... D& a convergent subsequence of u. Denote the limit of v by f. Since u is a correct

sequence, v determines the same class V' as wu.

Theorem 4.12. With the above notation, the class of all pro-V -groups is the pro-variety defined by the
pro-finite identity f = 1.

Proof. Let the pro-finite identity f = 1 hold in a pro-finite group G. Then by Proposition 4.11, v =1 in
G. Proposition 4.8 implies that for every neighbourhood H in G and all sufficiently large n the identity
vp, = 1 holds in G/H. This means that G/H lies in V and G is a pro-V-group.

Conversely, let G/H lie in V. By the definition of V, this means that v identically converges to 1 in
G. Therefore, the identity f =1 holds in G. O

Remark 4.13. Although all convergent subsequences of a correct sequence define the same pseudo-
variety, their limits may be different. For example, consider a correct sequence of the form u =

vi,avia” Y, ve, avaa”t, ... vn, avpa”t, ..., where @ € F and v = wvi,vs,...,Vp,... iS a correct con-
vergent sequence. If the limit of the subsequence v is f, we get a new convergent subsequence
v = avia” avea”t, ..., av,a” !, ... with limit afa~'. However, the elements f and afa™! define the

same variety.

Corollary 4.14. Let F = F(x,y), and let u, be defined by

(4.3) U =W,  Upt1 = [Un, Y],

where w = [x,y] or w is any word satisfying the conditions the hypotheses of Proposition 4.1.

Let v1,v2,...,0m,... be any convergent subsequence of (4.3) with limit f from F. Then the identity
f =1 defines the pro-finite variety of pro-nilpotent groups.

Proof. The corollary immediately follows from Proposition 4.1, Zorn’s theorem, and Theorem 4.12. [

Theorem 4.15. Let F = F(xz,y), let

(4.4) up=w = 2yr™,  Unp1 = [wunz L yuny Y,

be our main sequence, and let v, va, ..., Uy, ... be any convergent subsequence of (4.4) with limit [ from
F. Then the identity f = 1 defines the pro-finite variety of pro-solvable groups.



46 BANDMAN, GREUEL, GRUNEWALD, KUNYAVSKII, PFISTER, PLOTKIN
Proof. The theorem immediately follows from Theorems 1.1 and 4.12. U

We can now state the pro-finite analogue of the Thompson-Flavell theorem.

Corollary 4.16. A pro-finite group G is pro-solvable if and only if every closed two-generator subgroup
of G is pro-solvable.

Proof. Let every two-generator subgroup of G be pro-solvable. Take an element f € F (z,y) which is the
limit of a convergent subsequence of our sequence u. Let p be an arbitrary continuous homomorphism
ﬁ(ac, y) — G. Then wu(f) =1 since p(f) lies in a two-generator subgroup of G. This is true for arbitrary
w1 and, therefore, f = 1. According to Theorem 4.15, G is pro-solvable. 0

Corollary 4.14 and Theorem 4.15 should be compared with results of J. Almeida [Al2]. He used the
language of implicit operations and the notion of n!-type convergent subsequence to get nice proofs of
theorems of similar type. He also noticed that if our main theorem about solvable groups is true for the
sequence u! with initial term w = [z, y], then the n! version of the corresponding statement is also true.
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