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How many primes are there congruent to a mod q?

Let q ě 2 be a modulus and assume forever that a, b, a1, . . . , ar are relatively
prime to q.

Theorem (Dirichlet)

There are infinitely many primes p ” a mod q.

For example, there are infinitely many primes ending in 3 when written in base
10.

Theorem (Prime Number Theorem in Arithmetic Progressions)

Let πpx ; q, aq be the number of primes p ď x with p ” a mod q. Then

πpx ; q, aq :“
ÿ

nďx
n”a mod q

1primepnq „
πpxq

ϕpqq
„

x

ϕpqq log x
.

Here ϕpqq is Euler’s totient function, which counts the number of a mod q
with gcdpa, qq “ 1.
No dependence on a—primes are equidistributed mod q!
Primes are likely to be a mod q—a positive proportion of primes are a mod q.
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How many pairs of consecutive primes are congruent to pa, bq mod q?

A harder question:

How many primes congruent to a mod q are followed by primes congruent to b
mod q? That is, how often does pa, bq appear in the sequence of primes mod
q?
For fixed classes a1, . . . , ar mod q, how often does pa1, . . . , ar q appear in the
sequence of primes mod q?

Example: q “ 10

Are there infinitely many primes ending in 7 such that the next prime ends in 1?
The first few examples are p7, 11q, p37, 41q, p67, 71q, p97, 101q, p127, 131q,
p277, 281q, p307, 311q, p317, 331q, ...

In most cases, this question is open.



The consecutive primes conjecture

Conjecture: Consecutive primes equidistribute

For any r ě 1, for any modulus q and for any a1, . . . , ar with gcdpai , qq “ 1 for
all i ,

πpx ; q, pa1, . . . , ar qq :“ #tpn ď x : pn`i ” ai mod q @1 ď i ď ru

„
πpxq

pϕpqqqr
.

For twin primes (primes p such that p ` 2 is also prime) we think the following
should be true:

The twin primes conjecture

There are infinitely many twin primes. More precisely, for some constant C2,

πtwinpxq :“
ÿ

nďx

1primepnq1primepn ` 2q „ C2
πpxq

log x
.

The consecutive primes problem should be easier! Twin primes are rare among
primes; the patterns we want should be likely to occur.
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First steps towards consecutive primes

Corollary of Dirichlet’s Theorem

Assume that ϕpqq “ 2 and that a, b mod q with a ‰ b. Then πpx ; q, pa, bqq

approaches infinity as x Ñ 8.

For example, there are infinitely many primes that are 1 mod 4 such that the
next prime is 3 mod 4. This is because there are infinitely many primes of both
types, so there have to be infinitely many swaps.

Theorem (Shiu (2000), Banks–Freiberg–Turnage-Butterbaugh (2015))

For any integer r ě 1, for any a mod q,

πpx ; q, pa, . . . , aq
loooomoooon

r times

q Ñ 8.

Maynard (2016) showed further that the constant pattern of any length is likely
to occur; these primes represent a positive proportion of prime numbers.
All other cases are open. For example, we cannot show that there are infinitely
many primes ending in 7 such that the next prime ends in 1 in base 10.
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Nearby primes as consecutive primes

The proof comes from the idea that consecutive primes should be close
together, so that the result follows from Maynard’s work on nearby primes.

Theorem (Maynard, 2015)

For any integer r ě 1, for large enough k, for any “admissible” tuple of linear
forms L1pnq “ qn ` a1, L2pnq “ qn ` a2, . . . , Lkpnq “ qn ` ak , for infinitely
many n, at least r of the values Li pnq are prime.

qn ` a1 qn ` a2 qn ` a3 qn ` a4 qn ` a5

qn ` a2 qn ` a4

prime
for infinitely
many n



From Maynard’s theorem to consecutive primes

Say we have a tuple qn ` a1, qn ` a2, qn ` a3, with numbers appearing in the
gaps in between. Goal: for specific t ‰ ai , ensure that qn ` t is not prime.

qn ` a1
qn ` a1 ` 1

...

qn ` t

...

qn ` a2

...

qn ` a3

not prime

not prime

not prime
(divisible by pt)

not prime

not prime

Pick a prime pt such that pt ∤ q and t ı ai mod pt for all i .

Define At mod pt such that qAt ` t ” 0 mod pt .

Replace each linear form qn ` ai by qptn ` qAt ` ai .

Repeat for all t until the gaps contain no primes.
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Constant subsequences

Maynard’s theorem guarantees that some subtuple of size r will be
simultaneously prime infinitely often.

qn ` a1 qn ` a2 qn ` a3 qn ` a4 qn ` a5

qn ` a2 qn ` a4
prime

infinitely
often

We have no control over which subtuple is simultaneously prime. But with a
constant sequence this doesn’t matter: any subsequence of a constant
sequence is constant.
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The problem with non-constant sequences

If we’re looking for primes in different congruence classes mod q, the fact that
we have no control over which subtuple is simultaneously prime becomes a
problem.
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The problem with non-constant sequences
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Sums of two squares: a success story

In a different setting, this technique has been successful. Consider the set

E :“ tn P N : n “ a2 ` b2, a, b P Nu “ pEkqkPN

of integers that can be written as a sum of two squares, where Ek ă Ek`1.
By a theorem of Fermat, n P E if and only if each p|n with p ” 3 mod 4
divides n to an even power. Sums of two squares often act similarly to prime
numbers, and similar proofs apply in the two settings.

Theorem (Kimmel–K., (2023))

Let q be odd and squarefree. For any a, b mod q, for any integers ra and rb,
the pattern pa, bq appears infinitely often in the sequence pEk mod qqkPN.
Furthermore, the pattern

pa, . . . , a
looomooon

ra times

, b, . . . , b
looomooon

rb times

q

appears infinitely often in the sequence pEk mod qqkPN. Moreover, these
patterns are likely, in that they occur with positive frequency.

This theorem uses work of McGrath (2020) on a “second moment” version of
Maynard’s result which allows for some control over the subtuple containing
infinitely many simultaneous primes. Partial progress in the prime case has been
done by Banks–Freiberg–Maynard (2019), Pintz (2019), and Merikoski (2020).
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Backing up: data on consecutive primes

Consider the first 108 primes. In 2016, Lemke Oliver and Soundararajan
computed the following data for consecutive primes in arithmetic progressions
(modulo 10):

a b Number of primes
1 1 4623042

3 7429438
7 7504612
9 5442345

3 1 6010982
3 4442562
7 7043695
9 7502896

a b Number of primes
7 1 6373981

3 6755195
7 4439355
9 7431870

9 1 7991431
3 6372941
7 6012739
9 4622916

Our conjecture from the beginning predicted that every number in this table
should be « 6250000.



A more precise conjecture

Conjecture (Lemke Oliver–Soundararajan, 2016)

Let a “ pa1, . . . , ar q be a tuple of congruence classes modulo q. For certain
constants c1pq; aq and c2pq; aq,

πpx ; q, aq “
πpxq

ϕpqqr

ˆ

1 ` c1pq; aq
log log x

log x
` c2pq; aq

1

log x
` Opplog xq

´7{4
q

˙

.

The constant c1pq; aq is smaller the more repeats a has. A version of this
conjecture for sums of two squares was formulated by
David–Devin–Nam–Schlitt (2021).

πpx ; q, pa, bqq “
ÿ

hďx
h”pb´aq mod q

ÿ

nďx
n”a mod q

1primepnq1primepn`hq
ź

0ătăh

p1 ´ 1primepn ` tqq

Expanding the product gives us many different sums (with different signs!) of
the form

ÿ

t1,...,tkPr1,h´1s
ti distinct

ÿ

nďx
n”a mod q

1primepnq1primepn`t1q1primepn`t2q ¨ ¨ ¨ 1primepn`tkq1primepn`hq.

These sums we need to understand really well.
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Prime constellations: the Hardy–Littlewood k-tuples conjecture

Hardy–Littlewood Conjecture

Let D “ td1, . . . , dku be a sequence of distinct integers. As x Ñ 8,
ÿ

nďx

k
ź

i“1

1primepn ` di q “ SpDq
x

plog xqk
` opx{plog xq

k
q

where SpDq “
ź

p

1 ´ νDppq{p

p1 ´ 1{pqk

for νDppq is the number of equivalence classes modp occupied by D. SpDq is
called the singular series at the set D.

If they are independently chosen, the probability that none of n1, . . . , nk are 0

mod p is
´

1 ´ 1
p

¯k

.

The probability that none of n ` d1, . . . , n ` dk are 0 mod p is 1 ´
νDppq

p
.

When D “ t0, 2u, Hardy–Littlewood predicts the asymptotic number of twin
primes, via

ÿ

nďx

1primepnq1primepn ` 2q „ 2
ź

pě3

1 ´ 2{p

p1 ´ 1{pq2
x

plog xq2
« 1.32

x

plog xq2
.

When D “ t0, 1u, SpDq “ 0, since the factor at p “ 2 is 1´2{2

p1´1{2q2
“ 0. “Either

n or n ` 1 is even, so there are very few consecutive primes.”
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Tuples via Hardy–Littlewood

ÿ

tiPr1,h´1s
ti distinct

ÿ

nďx
n”a mod q

1primepnq1primepn ` t1q1primepn ` t2q ¨ ¨ ¨ 1primepn ` tkq1primepn ` hq
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1primepnq1primepn ` t1q1primepn ` t2q ¨ ¨ ¨ 1primepn ` tkq1primepn ` hq

„
ÿ

t1,...,tkPr1,h´1s
ti distinct

Spt0, t1, . . . , tk , huq
x

plog xqk

“
x

plog xqk

ÿ

t1,...,tkPr1,h´1s
ti distinct

Spt0, t1, . . . , tk , huq.

What really needs to be understood for these (and other!) computations is
sums of the constants SpDq as the tuple D changes.



Results on sums of singular series

Gallagher (1976): SpDq is 1 when averaged over k-tuples D Ď r1, hs (and
consequences for the number of intervals of width log x containing exactly
k primes)

Montgomery (1971), Goldston (1989): sharper estimates of
ř

nďh Spt0, nuq; Goldston used this to find sums of two primes in short
intervals

Montgomery–Soundararajan (2004): estimates of Rkphq, a sort of error
term for Gallagher’s average, when k is even and provide upper bounds
when k is odd (and consequences for the distribution of primes in longer
intervals)

K. (2024) and Bloom–K. (2024+): nearly tight upper bounds on Rkphq

when k is odd

K. (2023): bounds on averages of SpDq over k-tuples, where k is large
(and consequences for how many intervals of width log x contain at least
log log x primes)

Tao (2023): HL and above bounds imply that
ř8

n“1
p´1qnn

pn
converges

K. (2024), Leung (2024): estimates of variants of Rkphq with tuples
constrained by arithmetic progressions

Open question: Show that HL implies the Lemke Oliver–Soundararajan
conjecture.
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Much is left to be understood about consecutive primes.



Thank you!


