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Product Systems and their representations

In this talk 𝑃 is a unital subsemigroup of a discrete group 𝐺.
We say that a family 𝑋 = {𝑋𝑝}𝑝∈𝑃 of closed operator spaces in a
common ℬ(𝐻) is a product system if the following are satisfied:

1 𝐴 ∶= 𝑋𝑒 is a C*-algebra;
2 𝑋𝑝 ⋅𝑋𝑞 ⊆ 𝑋𝑝𝑞 for all 𝑝,𝑞 ∈ 𝑃 ;
3 𝑋∗

𝑝 ⋅𝑋𝑝𝑞 ⊆ 𝑋𝑞 for all 𝑝,𝑞 ∈ 𝑃 .
It follows that each 𝑋𝑝 has a natural Hilbert 𝐴-module structure.
A representation 𝑡 = {𝑡𝑝}𝑝∈𝑃 of 𝑋 consists of a family of linear
maps 𝑡𝑝 ∶ 𝑋𝑝 → ℬ(𝐾) such that:

1 𝑡𝑒 is a ∗-representation of 𝐴 ∶= 𝑋𝑒;
2 𝑡𝑝(𝜉𝑝)𝑡𝑞(𝜉𝑞) = 𝑡𝑝𝑞(𝜉𝑝𝜉𝑞) for all 𝜉𝑝 ∈ 𝑋𝑝 and 𝜉𝑞 ∈ 𝑋𝑞;
3 𝑡𝑝(𝜉𝑝)∗𝑡𝑝𝑞(𝜉𝑝𝑞) = 𝑡𝑞(𝜉∗

𝑝𝜉𝑝𝑞) for all 𝜉𝑝 ∈ 𝑋𝑝 and 𝜉𝑝𝑞 ∈ 𝑋𝑝𝑞.
We say that 𝑡 is injective if 𝑡𝑒 is injective.
We use the notation

𝑡(𝑝) ∶ 𝒦(𝑋𝑝) ∶= [𝑋𝑝𝑋∗
𝑝] → ℬ(𝐾);𝜉𝑝𝜂∗

𝑝 ↦ 𝑡𝑝(𝜉𝑝)𝑡𝑝(𝜂𝑝)∗,

for the induced ∗-representation of the compact operators 𝒦(𝑋𝑝).
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Product Systems and their representations

For a set 𝑍 ⊆ 𝑃 and 𝑝 ∈ 𝑃 we write

𝑝𝑍 ∶= {𝑝𝑥 ∣ 𝑥 ∈ 𝑍} and 𝑝−1𝑍 ∶= {𝑦 ∈ 𝑃 ∣ 𝑝𝑦 ∈ 𝑍}.

We set 𝒥 ∶= {𝑞−1
𝑛 𝑝𝑛 …𝑞−1

1 𝑝1𝑃 ∣ 𝑛 ∈ ℕ;𝑝𝑖, 𝑞𝑖 ∈ 𝑃}∪{∅}. It
follows that 𝒥 is ∩-closed.
We will write x,y etc. for the elements in 𝒥 and we will refer to
them as constructible ideals.
Consider the Fock space ℱ𝑋 ∶= ∑⊕

𝑟∈𝑃 𝑋𝑟 as a Hilbert 𝐴-module
and the Fock representation 𝜆∶ 𝑋 → ℒ(ℱ𝑋) where

𝜆𝑝(𝜉𝑝)𝜂𝑟 = 𝜉𝑝 ⋅ 𝜂𝑟 and 𝜆𝑝(𝜉𝑝)∗𝜂𝑟 = {𝜉∗
𝑝 ⋅ 𝜂𝑟 if 𝑟 ∈ 𝑝𝑃 ,

0 if 𝑟 ∉ 𝑝𝑃 .

We set 𝒯𝜆(𝑋) ∶= C∗(𝜆) and 𝒯(𝑋) ∶= C∗( ̂𝑡) where ̂𝑡 is the
universal representation of 𝑋.
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Product Systems and their representations

𝑡 will be called equivariant if C∗(𝑡) admits a coaction i.e. a
∗-homomorphism

𝛿 ∶ C∗(𝑡) → C∗(𝑡)⊗C∗
max(𝐺);𝑡𝑝(𝜉𝑝) ↦ 𝑡𝑝(𝜉𝑝)⊗𝑢𝑝,

where 𝑢𝑝 are the generators of the universal C*-algebra of 𝐺.
For x ∈ 𝒥 we define Kx,𝑡∗

to be the closed linear span of the spaces

(𝑡𝑝1
(𝑋𝑝1

)∗)𝜀 𝑡𝑞1
(𝑋𝑞1

)⋯𝑡𝑝𝑛
(𝑋𝑝𝑛

)∗𝑡𝑞𝑛
(𝑋𝑞𝑛

)𝜀′

for any 𝑝1, 𝑞1,…,𝑝𝑛, 𝑞𝑛 ∈ 𝑃 and 𝜀,𝜀′ ∈ {0,1} that satisfy

𝑝−𝜀
1 𝑞1 ⋯𝑝−1

𝑛 𝑞𝜀′
𝑛 = 𝑒 and 𝑞−𝜀′

𝑛 𝑝𝑛 …𝑞−1
1 𝑝𝜀

1𝑃 = x.

We set [C∗(𝑡)]𝑔 ∶= {𝑐 ∈ C∗(𝑡) ∣ 𝛿(𝑐) = 𝑐 ⊗𝑢𝑔} for each 𝑔 ∈ 𝐺.
There is an induced conditional expectation 𝐸 ∶ C∗(𝑡) → [C∗(𝑡)]𝑒.
We say that 𝑡 admits a normal coaction by 𝐺 if 𝐸 is faithful.
̂𝑡 is equivariant and 𝜆 admits a normal coaction by 𝐺.
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Fock covariant representations

We say that 𝑡 is a Fock covariant representation of 𝑋 if

ker𝜆∗ ∩[𝒯(𝑋)]𝑒 ⊆ ker 𝑡∗ ∩[𝒯(𝑋)]𝑒,
where 𝜆∗ ∶ 𝒯(𝑋) → 𝒯𝜆(𝑋) and 𝑡∗ ∶ 𝒯(𝑋) → C∗(𝑡) are the induced
∗-epimorphisms by the universality of 𝒯(𝑋).
Theorem (Kakariadis–P. 2024)

An equivariant injective representation 𝑡 of 𝑋 is Fock covariant if and
only if 𝑡 satisfies the following conditions:

1 K∅,𝑡∗
= (0).

2 For any ∩-closed ℱ = {x1,…,x𝑛} ⊆ 𝒥 such that ⋃𝑛
𝑖=1 x𝑖 ≠ ∅,

and any 𝑏x𝑖
∈ Kx𝑖, ̂𝑡∗

, with 𝑖 = 1,…,𝑛, the following property
holds:

if ∑
𝑖∶𝑟∈x𝑖

𝑡∗(𝑏x𝑖
)𝑡𝑟(𝑋𝑟) = (0) for all 𝑟 ∈ ⋃𝑛

𝑖=1 x𝑖, then

𝑛
∑
𝑖=1

𝑡∗(𝑏x𝑖
) = 0.
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Fock covariant representations

𝑃 is said to be a right LCM semigroup if 𝒥 = {𝑝𝑃 ∣ 𝑝 ∈ 𝑃}⋃{∅}.
A p.s. 𝑋 over a right LCM semigroup 𝑃 is compactly aligned if

𝜆(𝑝)(𝒦(𝑋𝑝))𝜆(𝑞)(𝒦(𝑋𝑞)) ⊆ 𝜆(𝑤)(𝒦(𝑋𝑤)) when 𝑝𝑃 ∩𝑞𝑃 = 𝑤𝑃.

We say that a representation 𝑡 of 𝑋 is Nica covariant if

𝑡(𝑝)(𝒦(𝑋𝑝))𝑡(𝑞)(𝒦(𝑋𝑞)) ⊆ {𝑡(𝑤) (𝒦(𝑋𝑤))) if 𝑝𝑃 ∩𝑞𝑃 = 𝑤𝑃,
(0) if 𝑝𝑃 ∩𝑞𝑃 = ∅.

Using our characterisation we give an alternative proof of:

Proposition (Dor-On–Kakariadis–Katsoulis–Laca–Li 2020)

A representation of 𝑋 is Fock covariant if and only if it is Nica covariant.
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Fock covariant representations

𝑃 ⊆ 𝐺 is a unital subsemigroup and 𝑋𝑝 = ℂ for each 𝑝 ∈ 𝑃 .
𝛼 = (𝑝1, 𝑞1,…,𝑝𝑛, 𝑞𝑛) is called neutral if 𝑝−1

1 𝑞1 ⋯𝑝−1
𝑛 𝑞𝑛 = 𝑒.

For a unital (i.e. 𝑡𝑒(1) = 1) representation 𝑡 of 𝑋 set 𝑤𝑝 ∶= 𝑡𝑝(1).
For a neutral word 𝛼 = (𝑝1, 𝑞1,…,𝑝𝑛, 𝑞𝑛) we write

𝐾(𝛼) ∶= 𝑞−1
𝑛 𝑝𝑛 …𝑞−1

1 𝑝1𝑃 and �̇�𝛼 ∶= 𝑤∗
𝑝1

𝑤𝑞1
⋯𝑤∗

𝑝𝑛
𝑤𝑞𝑛

.

Using our characterisation we give an alternative proof of:

Proposition (Laca–Sehnem 2021)

A unital (equivariant) representation 𝑡 is Fock covariant if and only if
1 𝑤𝑒 = 1,
2 �̇�𝛼 = 0 if 𝐾(𝛼) = ∅ for a neutral word 𝛼, and
3 �̇�𝛼 = �̇�𝛽 if 𝐾(𝛼) = 𝐾(𝛽) for neutral words 𝛼 and 𝛽,
4 ∏𝛽∈𝐹 (�̇�𝛼 −�̇�𝛽) = 0 whenever 𝛼 is a neutral word, 𝐹 is a finite

set of neutral words and 𝐾(𝛼) = ⋃𝛽∈𝐹 𝐾(𝛽).
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Fock covariant representations

Definition
Let ℱ be a class of ∗-representations of a C*-algebra 𝐴. We say that a Φ
in ℱ is ℱ-boundary and denote it by 𝜕ℱ if:

𝐴 Φ //

∀Ψ∈ℱ !!C
CC

CC
CC

CC
Φ(𝐴)

Ψ(𝐴)
∃

;;

Example

Let 𝐴,𝐵 be C*-algebras and

ℱ⊙ ∶= {Ψ∶ 𝐴⊗max 𝐵 → ℬ(𝐻) ∣ Ψ is injective on 𝐴⊙𝐵}.

Then the ∗-homomorphism 𝐴⊗max 𝐵 → 𝐴⊗𝐵 is ℱ⊙-boundary.
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Fock covariant representations

Theorem (Exel 1997)

Let 𝛿 be a coaction on a C*-algebra 𝐴 and let 𝒜 ∶= {𝒜𝑔}𝑔∈𝐺 to be the
induced Fell bundle. Let

ℱ𝒜𝛿 ∶= { equivariant repn’s of C∗
max(𝒜) that are injective on 𝒜𝑒}.

Then the canonical ∗-epimorphism C∗
max(𝒜) → C∗

𝜆(𝒜) is ℱ𝒜𝛿-bdy.

Theorem (Hamana 1978, Dritschel–McCullough 2000)

Let 𝔄 be an operator algebra and let

ℱ𝔄 ∶= {Ψ∶ C∗
max(𝔄) → ℬ(𝐾) ∣ Ψ|𝔄 is c.is.}.

Then ℱ𝔄 admits an ℱ𝔄-boundary repn, called the C*-envelope of 𝔄,
denoted by C∗

env(𝔄).
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Fock covariant representations

Let 𝑋 be a product system over 𝑃 . A key question in the theory of
product systems was whether there exists a boundary representation for

ℱF,𝐺
c,𝑋 ∶= { equivariant Fock covariant injective representations of 𝑋 },

and what is its relation to the C*-envelope of 𝒯𝜆(𝑋)+ ∶= alg(𝜆𝑝(𝑋𝑝))?
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Fock covariant representations

Affirmative answers
- For 𝑃 = ℤ+ Katsoulis–Kribs (2004) showed that
C∗

env(𝒯𝜆(𝑋)+) ≃ 𝒪𝑋 and Katsura (2007) showed that 𝒪𝑋 ≃ 𝜕ℱF,𝐺
c,𝑋 .

- For (𝐺,𝑃 ) quasi-lattice and with assumptions on 𝑋
Carlsen–Larsen–Sims–Vittadello (2011) showed that 𝜕ℱF,𝐺

c,𝑋 ≃ 𝒩𝒪𝑟
𝑋.

- For 𝑃 = ℤ𝑑
+ and 𝑋 arising from dynamics Davidson–Fuller–

Kakariadis (2014) showed that 𝜕ℱF,𝐺
c,𝑋 ≃ C∗

env(𝒯𝜆(𝑋)+).
- For (𝐺,𝑃 ) an abelian lattice Dor-On–Katsoulis (2018) showed that
𝜕ℱF,𝐺

c,𝑋 ≃ C∗
env(𝒯𝜆(𝑋)+).
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Fock covariant representations

Affirmative answers

- For 𝑃 a right LCM Dor-On–Kakariadis–Katsoulis–Laca–Li (2020)
showed that 𝜕ℱF,𝐺

c,𝑋 ≃ C∗
env(𝒯𝜆(𝑋)+,𝐺,𝛿).

- For any 𝑃 and 𝑋 trivial Kakariadis–Katsoulis–Laca–Li (2021) showed
that 𝜕ℱF,𝐺

c,𝑋 ≃ C∗
env(𝒯𝜆(𝑋)+,𝐺,𝛿).

- For general product systems Sehnem (2021) showed that
𝜕ℱF,𝐺

c,𝑋 ≃ C∗
env(𝒯𝜆(𝑋)+).
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Fock covariant representations

Strong covariant relations (Sehnem 2018)

(1) Sehnem (2018) constructed a universal C*-algebra 𝐴 ×𝑋 𝑃 of a
product system 𝑋 with the following property:

𝑋 ↪ 𝐴×𝑋 𝑃 and if 𝑡 ∶ 𝐴×𝑋 𝑃 → ℬ(𝐻) is a ∗-representation
with 𝑡|𝐴 injective then 𝑡 is injective on the fixed point algebra
of 𝐴×𝑋 𝑃 .

(2) 𝐴 ×𝑋 𝑃 admits a coaction by 𝐺 and a Fell bundle, say 𝒮𝒞𝐺𝑋. We
then write

C∗
max(𝒮𝒞𝐺𝑋) = 𝐴×𝑋 𝑃 and C∗

𝜆(𝒮𝒞𝐺𝑋) = 𝐴×𝑋,𝜆 𝑃 .

Theorem (Sehnem 2021)

𝜕ℱF,𝐺
c,𝑋 ≃ C∗

env(𝒯𝜆(𝑋)+) ≃ 𝐴×𝑋,𝜆 𝑃 . (1)
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The reduced Hao–Ng isomorphism problem

Let ℌ be a locally compact group.
A generalised gauge action is an action of ℌ on 𝒯𝜆(𝑋) such that

𝛼𝔥(𝜆𝑝(𝑋𝑝)) = 𝜆𝑝(𝑋𝑝) for all 𝑝 ∈ 𝑃 and 𝔥 ∈ ℌ.

There is an induced product system 𝑋 ⋊𝛼,𝜆 ℌ ∶= {𝑋𝑝 ⋊𝛼,𝜆 ℌ}𝑝∈𝑃 .
In the case where ℌ is discrete we have

𝑋𝑝 ⋊𝛼,𝜆 ℌ = span{𝜋(𝜆𝑝(𝜉𝑝))𝑈𝔥 ∣ 𝜉𝑝 ∈ 𝑋𝑝,𝔥 ∈ ℌ},

where 𝜋 ×𝑈 is a faithful representation of 𝒯𝜆(𝑋)⋊𝛼,𝜆 ℌ.

The reduced Hao–Ng isomorphism problem

Is 𝛼 compatible with the reduced strong covariant functor, i.e., is there a
canonical ∗-isomorphism

𝐴×𝑋⋊𝛼,𝜆ℌ,𝜆 𝑃 ?≃ (𝐴×𝑋,𝜆 𝑃)⋊𝛼,𝜆 ℌ.
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The reduced Hao–Ng isomorphism problem

Affirmative answers
- For 𝑃 = ℤ+ and ℌ l. c. amenable (Hao–Ng 2008).

- For 𝑃 = ℤ+ and ℌ discrete (Katsoulis 2017).

- For (𝐺,𝑃 ) an abelian lattice and ℌ discrete (Dor-On–Katsoulis 2018).

- For (𝐺,𝑃 ) an abelian lattice and ℌ l. c. abelian (Katsoulis 2020).

- For 𝑃 a right LCM and ℌ discrete (Dor-On–Kakariadis– Katsoulis–
Laca–Li 2020).

We should note that in all the cases above 𝑋 is considered to be
non-degenerate i.e., [𝐴 ⋅𝑋𝑝] = 𝑋𝑝 for every 𝑝 ∈ 𝑃 .
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The reduced Hao–Ng isomorphism problem

Definition (Katsoulis–Ramsey 2019)

Let 𝔄 be an operator algebra and 𝛼 an action of a locally compact group
ℌ on 𝔄 by completely isometric isomorphisms. The (nonselfadjoint)
reduced crossed product 𝔄 ⋊𝛼,𝜆 ℌ is the norm-closed sublagebra
generated by the copies of 𝔄 and ℌ inside C∗

env(𝔄) ⋊�̇�,𝜆 ℌ where ̇𝛼 is
the induced action on C∗

env(𝔄).

The next proposition, in the case 𝔄 admits a contractive approximate
identity, was proved by Katsoulis (2017) when ℌ is discrete and by
Katsoulis–Ramsey (2019) when ℌ is abelian. Βy using maximal
representations we can remove the c.a.i. hypothesis, when ℌ is discrete.

Proposition

Let ℌ be a discrete group acting by 𝛼 on an operator algebra 𝔄. Then

C∗
env(𝔄 ⋊𝛼,𝜆 ℌ) ≃ C∗

env(𝔄)⋊�̇�,𝜆 ℌ. (2)
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The reduced Hao–Ng isomorphism problem

Let ℌ be discrete. Using our characterisation of equivariant Fock
covariant injective representations we obtain the following:

Proposition

The identity representation 𝜄 ∶ 𝑋 ⋊𝛼,𝜆 ℌ → 𝒯𝜆(𝑋) ⋊𝛼,𝜆 ℌ is a Fock
covariant injective representation that admits a normal coaction.

We also need the following corollary of a result of Sehnem (2021):

Corollary

If 𝑡 is a Fock covariant injective representation of𝑋 that admits a normal
coaction, then the map

𝒯𝜆(𝑋)+ → alg{𝑡𝑝(𝑋𝑝) ∣ 𝑝 ∈ 𝑃};𝜆𝑝(𝜉𝑝) ↦ 𝑡𝑝(𝜉𝑝),

is a (well defined) completely isometric isomorphism.
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The reduced Hao–Ng isomorphism problem

Combining the preceding propositions we obtain

𝒯𝜆(𝑋 ⋊𝛼,𝜆 ℌ)+ ≃ 𝒯𝜆(𝑋)+ ⋊𝛼,𝜆 ℌ,

then (2) implies that

C∗
env(𝒯𝜆(𝑋 ⋊𝛼,𝜆 ℌ)+) ≃ C∗

env(𝒯𝜆(𝑋)+)⋊𝛼,𝜆 ℌ,

and (1) finishes the proof.
Hence the reduced Hao–Ng isomorphism problem for generalised gauge
actions by discrete groups has an affirmative answer:

Theorem (Kakariadis–P. 2024)

There exists a canonical ∗-isomorphism

(𝐴⋊𝛼,𝜆 ℌ)×𝑋⋊𝛼,𝜆ℌ,𝜆 𝑃 ≃ (𝐴×𝑋,𝜆 𝑃)⋊�̇�,𝜆 ℌ.
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