Hilbert transforms and Cotlar-type identities for groups acting on tree-like structures

Runlian Xia

University of Glasgow

Developments in Modern Mathematics The 2nd WiMGo conference

joint work with A. González-Pérez and J. Parcet

4 September 2024

The Hilbert transform

Definition

For $f \in C^{\infty}_{c}(\mathbb{R})$,

$$(Hf)(x) = \text{p.v.} \int_{\mathbb{R}} f(y) \frac{1}{x-y} dy.$$

As a Fourier multiplier:

$$\widehat{(Hf)}(\xi) = -i\operatorname{sgn}(\xi)\cdot\widehat{f}(\xi), \quad \xi \in \mathbb{R}.$$

Question

Is *H* well-defined and bounded on $L_p(\mathbb{R})$ $(p \neq 2)$?

The boundedness of Hilbert transform on $\ensuremath{\mathbb{R}}$

Results:

- Unbounded on L_p for $p = 1, \infty$.
- Trivially bounded on L_2 .
- M. Riesz (1924) Bounded for 1 .
- Cotlar (1955) Recursive: $p = 2^k + \text{Marcinkiewicz's Interpolation}$.
- Kolmogorov (1924) Bounded from L₁ to weak L₁.

The boundedness of Hilbert transform on $\ensuremath{\mathbb{R}}$

Results:

- Unbounded on L_p for $p = 1, \infty$.
- Trivially bounded on L₂.
- M. Riesz (1924) Bounded for 1 .
- Cotlar (1955) Recursive: $p = 2^k + \text{Marcinkiewicz's Interpolation}$.
- Kolmogorov (1924) Bounded from L_1 to weak L_1 .

Classical Cotlar Identity:

 $(Hf)^2 = f^2 + 2H(f Hf).$

Generalised by Mei and Ricard (2017) for amalgamated free product of von Neumann algebras.

Motivation:

$$\lim_{N\to\infty}\sum_{k=-N}^{N}\widehat{f}(k)e^{2\pi ik\theta}\longrightarrow f$$

in L_p -norm, for any $f \in L_p(\mathbb{T})$?

Problem

Let
$$f \in L_p(\mathbb{T})$$
 for $1 . Do we have
$$\sum_{k \in \mathbb{Z}} \widehat{f}(k) e^{2\pi i k \theta} \longrightarrow f(\theta) \text{ in } L_p\text{-norm}?$$$

Motivation:

$$\lim_{N\to\infty}\sum_{k=-N}^{N}\widehat{f}(k)e^{2\pi ik\theta}\longrightarrow f$$

in L_p -norm, for any $f \in L_p(\mathbb{T})$?

Problem

Let $f \in L_p(\mathbb{T})$ for 1 . Do we have

$$\lim_{N\to\infty} (T_{\mathbb{1}_{[-N,N]}}f)(\theta) = \lim_{N\to\infty} \sum_{k=-N}^{N} \widehat{f}(k) e^{2\pi i k \theta} \longrightarrow f(\theta) \text{ in } L_p\text{-norm?}$$

$$L_p$$
-norm convergence $\iff \sup_N \|T_{\mathbb{1}_{[-N,N]}} : L_p(\mathbb{T}) \to L_p(\mathbb{T})\| < \infty.$

Symbol	Multiplier
$i \operatorname{sgn}(k)$	Н
$1_{[0,\infty)}(k)$	$\frac{1}{2}(1+iH)$
$1_{[a,\infty)}(k)$	$\frac{1}{2}(1+iM_{e^{-2\pi iax}}HM_{e^{2\pi iax}})$
	$H_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_$
$1_{[a,b]}(k) = 1_{[a,\infty)}(k) \cdot 1_{[-b,\infty)}(-k)$	$H_a H_b$

where $M_{f(x)}g(x) = f(x)g(x)$.

$$\|H: L_p(\mathbb{T}) \to L_p(\mathbb{T})\| < \infty \Longleftrightarrow \sup_N \|T_{\mathbf{1}_{[-N,N]}}: L_p(\mathbb{T}) \to L_p(\mathbb{T})\| < \infty.$$

~ Connections to CBAP (completely bounded approximation property).

Runlian Xia

Non-Abelian groups

G: discrete group. Left regular representation

$$\lambda: \mathrm{G} \to \mathcal{U}(\ell_2(\mathrm{G})) \text{ with } \lambda_g \varphi(h) = \varphi(g^{-1}h). \mathcal{L}(\mathrm{G}) = \{\lambda_g\}_{g \in \mathrm{G}}^{''}.$$

Non-abelian Fourier transform

For
$$\widehat{f} \in \ell_1(G), f := \sum_G \widehat{f}(g) \lambda_g$$
 is a bounded linear map $\ell_2(G) \to \ell_2(G)$.

Non-commutative L_p -spaces

$$\mathcal{L}_p(\widehat{\mathrm{G}}) := \mathcal{L}_p(\mathcal{L}(\mathrm{G}), \tau) = ``\{f : \tau(|f|^p)^{\frac{1}{p}} < \infty\}"$$
 with $\tau(f) = \widehat{f}(e)$.

Fourier multipliers on $\mathcal{L}(G)$:

$$m \in \ell_{\infty}(\mathbf{G}) \rightsquigarrow T_m f := \sum_{\mathbf{G}} m(g) \widehat{f}(g) \lambda_g.$$

Noncommutative Cotlar identity

Problem: Does it hold that $||H = T_m : L_p(\widehat{G}) \to L_p(\widehat{G})|| < \infty$?

Let G be a discrete group and Γ be a subgroup of G. There exists a conditional expectation E from $\mathcal{L}(G)$ to $\mathcal{L}(\Gamma)$.

Generalised nc Cotlar identity (Mei-Ricard)

$$H(f)H(f)^* - E[H(f)H(f)^* - H(fH(f)^*) - H(fH(f)^*)^* + H(H(ff^*))^*)]$$

= $H(fH(f)^*) + H(fH(f)^*)^* - H(H(ff^*))^*).$

Proposition (González Pérez-Parcet-X)

Let $H = T_m$. TFAE:

- Generalised nc Cotlar identity holds for H.
- Condition on the symbol:

$$(m(gh) - m(g))(\overline{m(g^{-1})} - \overline{m(h)}) = 0, \forall g \in G - \Gamma, \forall h \in G.$$

Runlian Xia

lilbert transforms for groups acting on tree-I

Proof.

Let $\tilde{x} = x - E(x)$, $\forall x \in \mathcal{L}(G)$. Then the generalised nc Cotlar identity

$$H(\widetilde{f})H(\widetilde{f})^* - H(\widetilde{f}H(\widetilde{f})^*) - H(\widetilde{f}H(\widetilde{f})^*)^* + H(\widetilde{H}(\widetilde{f}F^*))^* = 0$$

for $f \in \mathbb{C}[G]$ is equivalent to

Proof.

Let $\tilde{x} = x - E(x)$, $\forall x \in \mathcal{L}(G)$. Then the generalised nc Cotlar identity

$$H(\widetilde{f})H(\widetilde{f})^* - H(\widetilde{f}H(\widetilde{f})^*) - H(\widetilde{f}H(\widetilde{f})^*)^* + H(\widetilde{H}(\widetilde{f}F^*))^* = 0$$

for $f \in \mathbb{C}[G]$ is equivalent to

 $\sum_{g\in G-\Gamma}\sum_{h\in G}\left[m(gh)\overline{m(h)}-m(g)\overline{m(h)}-\overline{m(g^{-1})}m(gh)+m(g)\overline{m(g^{-1})}\right]\widehat{f}(gh)\overline{\widehat{f}(h)}\lambda_{g}=0.$

This is equivalent to

$$m(gh)\overline{m(h)} - m(g)\overline{m(h)} - \overline{m(g^{-1})}m(gh) + m(g)\overline{m(g^{-1})} = 0$$

for any $g \in G - \Gamma$ and $h \in G$, i.e.

$$(m(gh) - m(g))(\overline{m(g^{-1})} - \overline{m(h)}) = 0, \ \forall g \in G - \Gamma, \forall h \in G.$$

Lemma (González Pérez-Parcet-X)

Let G be a discrete group and Γ be a subgroup of G. Let E be the conditional expectation from $\mathcal{L}(G)$ to $\mathcal{L}(\Gamma)$. If the symbol m is left Γ -invariant, then we have for any $p \geq 1$

 $\max\{\|E[H(f)H(f)^*]\|_p, \|E[H(fH(f)^*)]\|_p, \\ \|E[H(fH(f)^*)^*]\|_p, \|E[H(H(ff^*))^*)]\|_p\} \le \|E(ff^*)\|_p.$

Proposition (Mei-Ricard '17, González Pérez-Parcet-X) Let $H : L_2(\widehat{G}) \to L_2(\widehat{G})$ be bounded. If $(m(gh) - m(g))(\overline{m(g^{-1})} - \overline{m(h)}) = 0, \forall g \in G - \Gamma, \forall h \in G$ and m is left Γ -invariant, then $||H : L_p(\widehat{G}) \to L_p(\widehat{G})|| \lesssim \left(\frac{p^2}{p-1}\right)^{\beta}$, $\beta = \log_2(1 + \sqrt{2}).$

\mathbb{R} -trees

Let X be a Hausdorff topological space.

Arc γ **on** X: a subset of X s.t. \exists an bijective continuous function $\varphi : [0, 1] \rightarrow \gamma$.

X is uniquely arcwise connected (UAC): if any two points in X are joined by a unique arc.

 \mathbb{R} -tree: a metrisable UAC space X s.t. there is metric d such that the unique arc joining two points is isometric to a closed interval in the real line.

Examples: \mathbb{R} , simplicial trees.

Hilbert transforms for groups acting on $\mathbb{R}\text{-trees}$

Let G be a group acting on a UAC topological space X by homeomorphisms.

Choose a point P_0 in X and write $X \setminus \{P_0\}$ as the disjoint union of arc-connected subsets $\sqcup_i X_i = X \setminus \{P_0\}$.

Definition

For every arc-connected subset X_i , we choose a constant $C_i \in \mathbb{C}$ such that $\sup_i C_i < \infty$. Define a bounded function on X by

$$\widetilde{m}|_{X_i} \equiv C_i$$
, and $\widetilde{m}(P_0) = 0$.

Then the function \widetilde{m} induces a function on G by

$$m(g) = \widetilde{m}(g \cdot P_0)$$
 for any $g \in G$.

Remark

Let G_{P_0} be the stabiliser of P_0 in G. m is right G_{P_0} -invariant.

Theorem (González Pérez-Parcet-X.)

The function m defined above satisfies the Cotlar condition that for any $g, h \in G$ s.t. $g \notin G_{P_0}$,

$$(m(gh)-m(g))(\overline{m(g^{-1})}-\overline{m(h)})=0.$$

Remark

To ensure T_m is bounded on $L_p(\widehat{G})$, we need to take $C_i = C_j$ if $X_i = g \cdot X_j$ for some $g \in G_{P_0}$. In particular, when G_{P_0} is a normal subgroup of G, m is left G_{P_0} -invariant by default.

Runlian Xia

Hilbert transforms for groups acting on tree-li

Theorem (González Pérez-Parcet-X.)

The function m defined above is both left and right G_{P_0} -invariant and satisfies the Cotlar condition that for any $g, h \in G$ s.t. $g \notin G_0$,

$$(m(gh) - m(g))(\overline{m(g^{-1})} - \overline{m(h)}) = 0.$$

Remark

When G is finitely generated, T_m defined above is trivial iff G has property ($F\mathbb{R}$) (any action on an \mathbb{R} -tree has a global fixed point).

Theorem (González Pérez-Parcet-X.)

Let G act on a UAC space X. We can define a bounded function on G satisfying Cotlar, and therefore

$$\|T_m: L_p(\widehat{\mathrm{G}}) \to L_p(\widehat{\mathrm{G}})\| \lesssim \left(\frac{p^2}{p-1}\right)^{\beta}, \beta = \log_2(1+\sqrt{2}).$$

Example I: Free groups

Consider the free group with 2 generators \mathbb{F}_2 acting on its Cayley graph.

$$m = C_1 \mathbb{1}_{W_a} + C_2 \mathbb{1}_{W_b} + C_3 \mathbb{1}_{W_{a^{-1}}} + C_4 \mathbb{1}_{W_{b^{-1}}}$$

Example II: Baumslag-Solitar groups

The group presentation of B(m, n) is given by

$$\langle r, t: tr^m t^{-1} = r^n \rangle.$$

So B(m, n) is an HNN-extension based on $\Gamma = \mathbb{Z} = \langle r \rangle$ associated with $A = m\mathbb{Z}$ and $B = n\mathbb{Z}$.

Consider B(m, n) acting on its Bass-Serre tree by left multiplication.

Figure: Bass-Serre tree of B(m, n)

Runlian Xia

Hilbert transforms for groups acting on tree-li

Each element $g \in B(m, n)$ has a unique representation of the form

$$g=r^{i_0}t^{e_1}r^{i_1}\cdots t^{e_j}r^{i_j}$$
 with $i_0\in\mathbb{Z},e_1,\ldots e_i\in\{\pm1\},$

if $e_k = 1$, then $0 \le i_k \le m-1$, if $e_k = -1$, then $0 \le i_k \le n-1$ for $k \ge 1$.

Consider the action of B(m, n) on its Bass-Serre tree by left multiplication, the symbol (from our definition) of the Hilbert transform on B(m, n) admits the following form. For $g \notin \Gamma$,

$$m(g) = C_1, \quad ext{if } e_1 = 1$$

and

$$m(g) = C_2$$
, if $e_1 = -1$,

where C_1 and C_2 are constants. If $g \in \Gamma$, we have m(g) = 0.

Example III: Left-orderable groups

A group G is said to be **left-orderable** if there exists a left-invariant total order \leq on G, i.e. if $a \leq b$ then $ga \leq gb$ for all $g \in G$.

- Torsion-free nilpotent groups, such as the Heisenberg group;
- Baumslag-Solitar groups BS(1, n) for $n \ge 2$;
- Surface groups and Thompson group F.

Lemma

Every countable left-orderable group acts on the real line \mathbb{R} by orientation preserving homeomorphisms and without global fixed point.

Proposition (González Pérez-Parcet-X.)

Let G be a countable left-orderable group. If we view G as a group acting on the real line \mathbb{R} and choose $P_0 = 0$ in \mathbb{R} , then the corresponding symbol *m* given by our definition will be

$$m(g) = C_1$$
 if $e \preceq g$ and $g \neq e$,

$$m(g) = C_2$$
 if $g \leq e$ and $g \neq e$.

Hilbert transforms for groups acting on tree-li

Recent developments and questions

- (Lu-X.): We have defined and studied the Hilbert transforms on Coxeter groups.
- **Question**: Can we find a more general geometric object to replace the " \mathbb{R} -trees"? For instance, buildings?