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Matrix models

Matrix models play an important rôle in
enumerative geometry and combinatorics,
quantum gravity in two dimensions,
complex algebraic geometry,
quantum fields on noncommutative geometry,

and others.

In form of random matrix theory, they are important in
stochastics,
free probability.

They are examples for a universal structure called topological recursion.

We try to give an idea of recently established connections between topological recursion and
the two above fields related to noncommutative geometry:
(1) free probability and (2) QFT on NCG.
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Topological recursion

[Eynard, Orantin 07] noticed that the non-linearity of many matrix models can be
disentangled into initial data called the spectral curve and a universal recursion for
meromorphic functions W(g)

n (or promoted to meromorphic differentials ω(g)
n =W(g)

n
∏

dx).

Spectral curve (x , y : Σ→ P1,B)

Complex curve/Riemann surface Σ and two ramified coverings x , y : Σ→ P1.
Polynomial equation P(x , y) = 0.
Bergman kernel B : symmetric bidifferential on Σ× Σ, with double pole on diagonal, no
other pole, normalised.

Soon later many important examples other than matrix models were identified:
Weil-Peterssen volumes of moduli spaces of bordered hyperbolic surfaces [Mirzakhani 07].
ELSV formula, expresses simple Hurwitz numbers as integral of ψ- and λ-classes over
Mg ,n [Bouchard, Mariño 07; Eynard, Mulase, Safnuk 09].
Semisimple cohomological field theories [Dunin-Barkowski, Orantin, Shadrin, Spitz 14].
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Free probability
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Free probability
Introduced by Voiculescu in the 80s to attack the free group factor problem.

Definition
A noncommutative probability space is a unital algebra A together with a unital functional
ϕ : A → C. A family of subalgebras Ai ⊆ A is called free if ϕ(a1 · · · an) = 0 whenever
ϕ(ak) = 0 (‘centered’) and neighbouring ak are from different subalgebras Aik .

Free central limit theorem [Voiculescu 85]
Let (ai )i∈N be a family of freely independent random variables in nc prob. space (A, ϕ) which
are (1) identically distributed ϕ(ari ) = ϕ(arj ), (2) centered ϕ(ai ) = 0, and (3) normalised
ϕ(a2

i ) = 1. Let Sn := 1√
n

(a1 + ...+ an). Then (Sn)n∈Z>0 converges to semicircular variable:

lim
n→∞

ϕ(Sk
n ) =

1√
2π

∫ 2

−2
dt tk

√
4− t2 =

{
0 for k odd,
Cm = 1

m+1

(2m
m

)
for k = 2m even.

Eigenvalue distribution of large random GUE matrices obeys same semicircular law [Wigner 55].
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Free moments and free cumulants

Definition [Speicher 92]
The free cumulants κn : An → C in nc prob. space (A, ϕ) are inductively defined by

ϕ(a1 · · · an) =:
∑

π∈non-crossing
partitions of n

∏
blocks V∈π

κl(ai1 , ..., ail︸ ︷︷ ︸
if V=(i1,...,il )

)

Freeness is equivalent to vanishing of mixed cumulants: κn(a1, . . . , an) = 0, n ≥ 2, whenever
some {ai , aj} from different subalgebras.

Theorem
For a ∈ A, the generating series

Ma(z) := 1 +
∞∑
n=1

ϕ(an)zn , Ca(z) := 1 +
∞∑
n=1

κn(a, ..., a)zn

satisfy the functional relation Ca(zMa(z)) = Ma(z)

(equivalent to a formula for Voiculescu’s R-transform)
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Higher-order freeness

[Collins, Mingo, Śniady, Speicher 06/07] introduced freeness of higher order and
corresponding moments and cumulants, collected to

Mn(X1, ...,Xn) :=
∞∑

k1,...,kn=1

ϕn(ak1 , ..., akn)
n∏

i=1

X ki
i , Cn(y1, ..., yn) :=

∞∑
k1,...,kn=1

κk1,...,kn(a, ..., a)
n∏

i=1

ykii

They were able to identify the functional relation for n = 2:

M2(X1,X2) +
X1X2

(X1 − X2)2 =
d log y1

d logX1

d log y2

d logX2

(
C2(y1, y2) +

y1y2

(y1y2)2

)
(*)

where yi = XiM1(X1) and Xi = yi/C1(y1). The generalisation to n ≥ 3 remained open.

[Borot, Garcia-Failde 17] proved that (*) also relates generating series for ordinary and
fully simple maps, themselves governed by TR. Is free probability linked to TR?
[Borot, Charbonnier, Garcia-Failde, Leid, Shadrin 21] identified several facets of a master
relation, one facet leading to functional relations for (g , n)-free moments and cumulants.
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Master relation and functional relations

Free probablity is rooted in permutations, partitions and partitioned permutations.
Partioned permutation come with a product, which induces a convolution product ? on
functions of partioned permutations.
An important such function is the zeta function, ζ(A, α) = 1 iff the partition A of
{1, ..., d} equals the support of the cycles of α ∈ S(d), and 0 otherwise.
There is a nice class of functions of partioned permutations, called multiplicative. They
are natural generating series of n-point functions.

Theorem [Borot, Charbonnier, Garcia-Failde, Leid, Shadrin 21] – here only g = 0
Let φ, φ∨ be multiplicative functions related by φ = ζ ? φ∨. Then their n-point functions G0,n
and G∨0,n satisfy G0,1(X ) = G∨0,1(y), for n = 2 the [CMSS07]-relation (*) and for n ≥ 3

G0,n(X1, ...,Xn) =
∑

r1,...,rn≥1

n∏
i=1

O∨ri (yi )
∑

T∈G0,n(~r)

∏̃
b∈B(T )

G∨0,|I (b)|(yI (b)) , Xi =
yi

G∨0,1(yi )
,

where G0,n(~r) = {bipartite trees with n ri -valent white vertices of operator weight O∨ri (yi )}.
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Notes

The proof uses identities for weakly and strictly monotone Hurwitz numbers as well as
Fock space techniques.

The authors conjectured that the relation between G and G∨ also captures the x-y swap
in topological recursion: Let ω(g)

,n be meromorphic differentials computed from TR for
spectral curve (x , y ,B), and ω(g)∨

n be those for spectral curve (y , x ,B). Setting

ω
(g)
n (x1, ..., xn) = Gg ,n(x−1

1 , ..., x−1
n )

n∏
i=1

dxi
xi
, ω

(g)∨
n (y1, ..., yn) = G∨g ,n(y1, ..., yn)

n∏
i=1

dyi
yi

then Gg ,n,G
∨
g ,n are related by previous formula.

TR is built from ω0,1 = ydx from which symplectic form dy ∧ dx is constructed. Several
symplectic transformations were clarified by [Eynard, Orantin 07], but not the x-y swap.

Conjecture proved by combined effort of [Hock 22] and [Alexandrov, Bychkov,
Dunin-Barkowski, Kazarian, Shadrin 22].
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Scalar quantum fields
on noncommutative geometries
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Euclidean QFT on NCG

We adopt the point of view of Euclidean QFT which relates Schwinger functions to
moments of a measure on a space of distributions.
Linear theory governed by spectral dimension of Laplace-type operator.
Non-linear QFT are challenging because multiplication of distributions needs work.
Regularisation to finite-dimensional problem and careful limiting procedure are necessary.

All this can be done on noncommutative geometries whose finite-dimensional
approximations are algebras of matrices. A regularised QFT on NCG is a matrix model.

Matrix models admit powerful tools. In many cases they are solvable in 1/N-expansion that is
governed by topological recursion.

Aim is to learn how to build non-linear constructs of these distributions, defined by product in
operator algebra. Works better than on manifolds!
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Kontsevich matrix model with arbitrary potential

For λ1, ..., λN > 0 consider the Gaußian probability measure dµΛ(M) on
HN = {selfadjoint N × N-matrices} with covariance 〈MklMmn〉 = δknδlm

N(λk+λl )
.

Given a polynomial V (x), we can deform the Gaußian measure to
dµΛ,V (M) = 1

ZΛ,V
e−N Tr(V (M))dµΛ(M). Then

τ(t1, t3, t5, ..) :=
∫
HN

dµΛ,V (M) exp
(∑∞

k=0 t2k+1Tr(M2k+1)
)

is a τ -function of the BKP integrable hierarchy [Borot, W 23]

V (x) = i
3x

3 defines the original Kontsevich model. Then ZΛ, i3 x
3 =: Z (~s) has asymptotic

expansion in variables s2k+1 = −(2k − 1)!!
∑N

i=1 λ
−(2k+1)
i

Z (~s) is τ -function of KdV integrable hierarchy and generating series of intersection
numbers of Chern classes on moduli spacesMg ,n of stable complex curves.

QFT motivates us to also study a quartic potential V (x) = 1
4x

4.
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Dyson-Schwinger equations and recursion

Dyson-Schwinger equations are identities between moments/cumulants obtained by
integration by parts.

Graphically, weight 1
N for edge, N for vertex and, by convention, N also for summation

over face variables. Gives grading by Euler characteristic χ = #v −#e + #f .
DSE typically permit extension to complexified face labels x ∈ C.

Recursive structure of 1/N-expansion
1 Non-linear equation for highest Euler characteristic. After change of variables x = x(z)

(sometimes) solvable by complex-analytic tools. Result defines y(z).
2 Topological recursion [Eynard, Orantin 07] in decreasing Euler characteristic starting

from x , y and Bergman kernel B which on P1 is B(z1, z2) = dz1 dz2
(z1−z2)2

.
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2 Topological recursion [Eynard, Orantin 07] in decreasing Euler characteristic starting

from x , y and Bergman kernel B which on P1 is B(z1, z2) = dz1 dz2
(z1−z2)2

.
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The Kontsevich matrix model

Main definition(∫
HN

dµΛ, i3 x
3(M) Ma1a1 · · ·Manan

)
c
− δn,1

Nλa1

2
:=

∞∑
g=0

N2−n−2gW
(g)
a1,...,an

as formal power series, all ai pairwise different, ( )c stands for “cumulant”.

Derive Dyson-Schwinger equations for these W (g), complexify them to eqs. for
W (g)(x1, ..., xn) with W (g)(λa1 , ..., λan) = W

(g)
a1,...,an(

W (0)(x)
)2

= x2 − 2
N

∑N
k=1

W (0)(λk )−W (0)(x)
λk−x with solution [Makeenko, Semenoff 91]

W (0)(x) = −
√
x2+c + 1

N

∑N
l=1

1√
λ2
l +c(

√
x2+c+

√
λ2
l +c)

where c = 2
N

∑N
k=1

1√
λ2
k+c

.

Suggests change of variables z =
√
x2 + c that leads to x(z) = z2 − c ramified at z = 0

and y(z) = z + 1
N

∑N
k=1

1
εk (εk−z) , εk =

√
λ2
k + c

Arrive at rational functions W(g)(z1, .., zn) = W (g)(x(z1), .., x(zn))
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Linear and quadratic loop equations

Theorem [Borot, Eynard, Orantin 15]
1 Given a spectral curve (x , y : Σ→ P1,B), with technical assumptions.

2 Set y =:W(0)
1 , B(z ,w) =:W(0)

2 (z ,w)dx(z)dx(w), x−1(x(z)) = {ẑ0 = z , ẑ1, ...., ẑd}.
3 Assume that the following are holomorphic at any branch point of x :

L(x(z); z2, ..., zn) :=
d∑

j=0

W(g)
n (ẑ j , z2, ..., zn)

Q(x(z); z2, ..., zn) =
d∑

j=0

( ∑
I1]I2={z2,...,zn}

g1+g2=g

W(g1)
|I1|+1(ẑ j , I1)W(g2)

|I2|+1(ẑ j , I2) +W(g−1)
n+1,reg (ẑ j , ẑ j , z2, ..., zn)

)

Then there is a formula which evaluates W(g)
n in terms of W(g ′)

n′ with 2g ′+n′ < 2g+n.

This formula is particularly simple (and universal!) under a projection property
W(g)

n (z , z2, ..., zn) =
∑

β=ramif.pts Resq=β

( ∫ q
β W

(0)
2 (z , .)dx(.)

)
W(g)

n (q, z2, ..., zn)dx(q)
(Otherwise ‘blobbed topological recursion’ [Borot, Shadrin 17])
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|I2|+1(ẑ j , I2) +W(g−1)
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Kontsevich model with quartic potential

Take quartic potential V (x) = 1
4x

4, consider 2-point function
1
N

∫
HN

dµΛ, 14 x
4(M) MabMba =:

∞∑
g=0

N−2gG
(g)
|ab|

Complexify to G (g)(x1, x2) with G (g)(λa, λb) = G
(g)
|ab|:

Theorem [Grosse, W 09]
The planar two-point function satisfies the closed non-linear Dyson-Schwinger equation(

x1 + x2 +
1
N

N∑
k=1

G (0)(x1, λk)
)
G (0)(x1, x2) = 1 +

1
N

N∑
k=1

G (0)(λk , x2)− G (0)(x1, x2)

λk − x1

Generalises to N →∞ and spectral dimension δ = inf{p :
∑∞

i=1 λ
−p/2
i <∞}.

Renormalisation necessary and possible for 2[ δ2 ] ∈ {2, 4}
2D Moyal solved by [Panzer, W 18], general case of 2[ δ2 ] ≤ 4 by [Grosse, Hock, W 19]

Since this talk is about TR, we focus on finite matrices.
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Solution for finite matrices

Theorem [Schürmann, W 19]

Ansatz −x(−z) = 1
N

∑N
k=1 G

(0)(x(z), λk) + x(z) + 1
N

∑N
k=1

1
λk−x(z) and

G (0)(x(z1), x(z2)) =: G(0)(z1, z2)

determines x(z) = z − 1
N

∑N
k=1

%k
εk+z , where x(εk) = λk

and x ′(εk)%k = 1 and solves DSE

G(0)(z ,w) =
P

(0)
1 (x(z), x(w))

(x(z) + y(w))(x(w) + y(z))
where y(z) = −x(−z) and

P
(0)
1 (x(z), x(w)) =

∏
u∈x−1({x(w)})(x(z) + y(u))∏d

k=1(x(z)− x(εk))
≡ P

(0)
1 (x(w), x(z))

Main definition [Branahl, Hock W 20]

For pairwise different a1, ..., an, set W
(g)
a1,...,an :=[N2−2g−n]

(−1)n∂n logZ
Λ, 14 x4

∂λa1 ···∂λan
+

δg,0δn,2
(λa1−λa2 )2

for 2g + n ≥ 2, and complexify to W(g)
n (z1, ..., zn). Moreover, W(0)

1 (z) = y(z).
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Notes

The linear and quadratic loop equations for W(g)
n (z1, ..., zn) hold locally [Hock, W 23]:

L(x(z); z1, ..., zn) and Q(x(z); z1, ..., zn) are holomorphic at branch points of x .
But the projection property does not hold: We have blobbed topological recursion.

In [Hock, W 23] we established L,Q globally (i.e. exactly) for genus g ≤ 1. Provides
concrete recursion formulae for W(0)

n (z1, ..., zn) and W(1)
n (z1, ..., zn).

Found x(z) for limit to 2D [Panzer, W 18] and 4D [Grosse, Hock, W 19] nc Moyal space:

D = 2 : x(z)= z − λ log(1 + z)

D = 4 : x(z) = z · 2F1

(αλ, 1− αλ
2

∣∣∣−z) αλ =

{
arcsin(λπ)

π for |λ| ≤ 1
π

1
2 + iarcosh(λπ)

π for λ ≥ 1
π

The latter encodes effective spectral dimension δ = 4− 2
π arcsin(λπ). This dimension

drop avoids the triviality problem of the usual λφ4
4-model.

Main message: expand about the solvable planar theory, not about the Gaußian!

Raimar Wulkenhaar (Münster)
NCG meets TR

Overview Free probability Functional relations QFT on NCG Quartic model 17 / 19



Notes

The linear and quadratic loop equations for W(g)
n (z1, ..., zn) hold locally [Hock, W 23]:

L(x(z); z1, ..., zn) and Q(x(z); z1, ..., zn) are holomorphic at branch points of x .
But the projection property does not hold: We have blobbed topological recursion.

In [Hock, W 23] we established L,Q globally (i.e. exactly) for genus g ≤ 1. Provides
concrete recursion formulae for W(0)

n (z1, ..., zn) and W(1)
n (z1, ..., zn).

Found x(z) for limit to 2D [Panzer, W 18] and 4D [Grosse, Hock, W 19] nc Moyal space:

D = 2 : x(z)= z − λ log(1 + z)

D = 4 : x(z) = z · 2F1

(αλ, 1− αλ
2

∣∣∣−z) αλ =

{
arcsin(λπ)

π for |λ| ≤ 1
π

1
2 + iarcosh(λπ)

π for λ ≥ 1
π

The latter encodes effective spectral dimension δ = 4− 2
π arcsin(λπ). This dimension

drop avoids the triviality problem of the usual λφ4
4-model.

Main message: expand about the solvable planar theory, not about the Gaußian!

Raimar Wulkenhaar (Münster)
NCG meets TR

Overview Free probability Functional relations QFT on NCG Quartic model 17 / 19



Notes

The linear and quadratic loop equations for W(g)
n (z1, ..., zn) hold locally [Hock, W 23]:

L(x(z); z1, ..., zn) and Q(x(z); z1, ..., zn) are holomorphic at branch points of x .
But the projection property does not hold: We have blobbed topological recursion.

In [Hock, W 23] we established L,Q globally (i.e. exactly) for genus g ≤ 1. Provides
concrete recursion formulae for W(0)

n (z1, ..., zn) and W(1)
n (z1, ..., zn).

Found x(z) for limit to 2D [Panzer, W 18] and 4D [Grosse, Hock, W 19] nc Moyal space:

D = 2 : x(z)= z − λ log(1 + z)

D = 4 : x(z) = z · 2F1

(αλ, 1− αλ
2

∣∣∣−z) αλ =

{
arcsin(λπ)

π for |λ| ≤ 1
π

1
2 + iarcosh(λπ)

π for λ ≥ 1
π

The latter encodes effective spectral dimension δ = 4− 2
π arcsin(λπ). This dimension

drop avoids the triviality problem of the usual λφ4
4-model.

Main message: expand about the solvable planar theory, not about the Gaußian!
Raimar Wulkenhaar (Münster)
NCG meets TR

Overview Free probability Functional relations QFT on NCG Quartic model 17 / 19



Diversity
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YAM — Young African mathematicians
The YAM network is a collaboration between

five AIMS centers in Cameroon, Ghana, Rwanda, Senegal and South Africa

four German Clusters of Excellence with a focus on mathematics:

10 fellows 2023/24
(5 female, 5 male)

continues in October
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